
© 2025 Journal of International Commercial Law and Technology; Volume: 6: Issue: 1| All Right Reserved 1003 

 

Journal of International Commercial Law and Technology 
Print ISSN: 1901-8401 

 

Website: https://www.jiclt.com/  

  

Article  

Explaining Global Happiness Through XAI: A 

Multi-Model Interpretable Machine Learning 

Approach   
Article History: Abstract: It has become a significant subject in economics, human 

behavior, and public policy to find out what affects people's well-
being the most. There are various methods that can show the 
relationship between income, social life, and life satisfaction, but 
the majority of them do not provide an explanation of how these 
things interact in real life. A new and efficient way of predicting 
happiness levels using data from the World Happiness Report is 
presented by the current research. Out of eleven machine-learning 
models, CatBoost was the one that yielded the most precise 
results. To facilitate better understanding of the predictions, SHAP 
and LIME were employed to illustrate the impact of each variable 
on the outcomes. Among the factors highlighted in the results, 
income, social support, healthy life expectancy, freedom of choice, 
and government trust are the most influential ones for happiness. 
Furthermore, the study shows that the degree of significance of 
these factors differs from region to region. The research by linking 
accurate predictions with straightforward interpretations pro 
vides policy-makers with valuable information for their lifetime 
quality enhancement goals. 
 
Keywords: XAI, SHAP, LIME, world happiness index. 
  

 
Name of Author: 
Mrs. Neha Goyal1, Sahil Mallick2, Sarthak 
Sabharwal3 
 
Affiliation:  
1Computer Science and Engineering the 
NorthCap University, Gurugram, India 
2Computer Science and Engineering, The 
NorthCap University, Gurugram, India 
3Computer Science and Engineering, The 
NorthCap University, Gurugram, India 
 
 

Corresponding Author: 
Mrs. Neha Goyal 
aggarwal.neha83@gmail.com  

 
How to cite this article: Goyal N, et al. 
Explaining Global Happiness Through 
XAI: A Multi-Model Interpretable 
Machine Learning Approach. J Int 
Commer Law Technol. 2025;6(1):1003–
1023 
 
Received: 7-10-2025 
Revised:    18-10-2025 
Accepted:  05-11-2025 
Published: 20-11-2025 
 
©2025 the Author(s). This is an open access 
article distributed under the terms of the 
Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0 

 
 
 
 

  
 

 

INTRODUCTION 
BACKGROUND AND MOTIVATION 
People are at a point where we see happiness as a 
great indicator of a country’s health which in turn is a 
result of more than just economy or health but also 
social and emotional health. What we are also seeing 
is that governments and international organizations 
have bought into the idea that for true well being of a 
person that which determines health is a wider set of 
factors. While GDP, inflation and productivity still are 

issues of import, in the past decade what has come to 
the fore is the importance of how people report to feel 
about their lives which in turn we use to better 
improve policies which in turn improve life. 
A significant factor in this change is the World 
Happiness Report. It considers a variety of factors, 
such as social support, health, freedom, and trust in 
the government, rather than just wealth. Combining 
all of these elements provides a far more 
comprehensive view of how life is going in various 
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nations and helps identify the key elements that go 
into leading a fulfilling life. 
Despite all the data available, determining the way 
that these many individual factors interact is difficult. 
Many of the factors previously discussed; income 
levels, life expectancy, personal freedoms, healthy 
relationships, institutional trust, etc. have an 
interconnection that is difficult for traditional 
statistical analysis to accurately capture. 
Due to the limitations of traditional statistical 
methods to capture the complexities of societies, 
there is increasing use of Machine Learning to 
determine the underlying factors of happiness. 
Models of Machine Learning, especially ensemble 
methods and Gradient Boosting models are highly 
sought after due to their ability to shift through large 
amounts of social data and discover relationships 
between variables that may be too complex for 
traditional models to detect. Additionally, they are 
better able to account for the complex non-linear 
relationships that exist between variables affecting 
individuals' overall well-being. 
Although the ability of Machine Learning models to 
find hidden relationships is a major advantage, this 
same property also causes a drawback: Machine 
Learning models are typically opaque. Their decision-
making process is largely unknown. Therefore, it is 
not always easy to determine which factors are the 
most influential in a model prediction of an 
individual's happiness level or why a model predicted 
a particular level of happiness. 
A lack of understanding of a model's behavior limits 
its applicability for the three primary uses of models: 
policy-making, social research and development 
planning. Millions of lives can be affected by the 
decisions based on the output of a model. Therefore, 
stakeholders require transparency and clarity into 
the workings of models in order to build trust and 
take action on those outputs. In response to this 
limitation, the field has moved toward Explainable AI 
(XAI), which includes a variety of techniques to 
provide insight into the decision-making process of 
Machine Learning models. 
Among XAI techniques, SHAP (SHapley Additive 
Explanations) and LIME (Local Interpretable Model-
Agnostic Explanations) have become the most 
influential because of their strong theory and useful 
applications. SHAP gives global and local 
explanations based on cooperative game theory. 
LIME creates easy-to-understand local models 
This study aims to combine high prediction accuracy 
with deep interpretability for estimating global 
happiness. It compares five different machine 
learning algorithms to find the best one to predict 
happiness: Linear Regression, Gradient Boosting, 
Random Forest, AdaBoost and particularly CatBoost. 
In addition, researchers applied SHAP and LIME for 
interpretability. The researchers aim to develop a 
reliable method to understand the causes of global 

happiness. Thus, researchers want to be able to 
correctly predict happiness scores and to describe 
the relationships between socioeconomic, 
demographic and regional variables in their ability to 
predict happiness scores. 
At last, the researchers provide an accurate analytical 
base on which social scientists, international 
organizations and policy makers can establish 
evidence-based strategies for increasing the well-
being of nations. 
 

Literature Review 
Economists, psychologists, social scientists, and 
policymakers have typically been responsible for 
understanding happiness around the world. We can 
now measure well-being using precise 
socioeconomic indicators thanks to large-scale 
international surveys like the World Happiness 
Report. These include perceptions of corruption, 
generosity, freedom to make life decisions, social 
support, GDP per capita, and healthy life expectancy. 
Both objective and subjective components of national 
well-being are reflected in these factors, which are 
displayed in our dataset from 2015 to 2023. 
Correlation-based analysis and linear regression 
models were key components of traditional research 
in this field. These techniques assisted in 
demonstrating broad connections between life 
satisfaction measures and predictors. They do, 
however, make the potentially restrictive 
assumptions of linearity and independence among 
features. In actuality, complex interactions are the 
source of happiness. Social cohesion and economic 
prosperity interact. Income has an impact on health 
infrastructure. Freedom and confidence in 
government are impacted by perceptions of 
corruption. 
Machine learning has emerged as a potent substitute 
due to advancements in computational modeling. 
Multi-dimensional socioeconomic patterns, feature 
interactions, and nonlinear relationships can all be 
captured by it. Research utilizing Random Forest, 
Gradient Boosting, and Neural Networks to forecast 
well-being and quality of life has demonstrated 
notable improvements in prediction accuracy. These 
models are not interpretable, though. This creates 
problems for public policy, where logic and openness 
are crucial. 
Explainable Artificial Intelligence (XAI) is now highly 
needed in socioeconomic modeling as a result of this. 
Interpretative, model-agnostic analysis is made 
possible by methods such as SHAP (Shapley Additive 
Explanations) and LIME. They illustrate the relative 
contributions of each variable to the expected levels 
of happiness, such as gdp per capita, healthy life 
expectancy, and perceptions of corruption. These 
interpretability tools ensure that predictions align 
with ethical responsibility, human reasoning, and 
policymakers' expectations. 
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The literature review that follows outlines earlier 
research and points out gaps in explainable 
socioeconomic prediction in order to set the scene for 
this study. 
 
Explainable AI in Socioeconomic and Happiness 
Modelling 
AI has been used more and more in the last few years 
to look at social and economic trends because there 
are now more global datasets available. Tree-based 
machine learning models, like Random Forest, 
XGBoost, LightGBM, and CatBoost, have shown that 
they can accurately predict well-being scores. These 
models show how social support, personal freedom, 
and healthy life expectancy are all connected in a 
messy, non-linear way. This gives us a picture that 
looks a lot more like how people really act. 
But there’s one problem: all these are models we can 
barely interpret, no matter how technically powerful 
they may be. When it comes to that, being right isn’t 
enough. This is the desire for interpretable model 
decisions. They want to know why happiness is 
increasing in some places and decreasing in others, 
and what specifically are the variables that drive 
those patterns. Without that clarity, even the best 
predictions can appear to fall apart in real-world 
decision making. 
Explainable AI helps to close this gap by offering 
context around a model’s predictions, not just their 
results. For example, SHAP employs cooperative 
game theory concepts to break down the relative 
importance of each feature toward a model 
prediction. LIME takes a different approach, focusing 
on providing interpretable explanations for each 
prediction (i.e., what the underlying reasons are, 
why one country ended up more or less happy than 
another). 
So far, there hasn’t been much research using 
explainable AI for socioeconomic forecasting. Most 
existing studies focus on areas like poverty detection 
or basic well-being classification. Very few have used 
both SHAP and LIME together for global happiness 
prediction, and almost none have compared what 
these explainers reveal across several advanced 
machine learning models. 
This gap is exactly what motivates our use of a dual-
explainer interpretability setup. 
 
Temporal Dynamics and Year-Wise Happiness 
Prediction 
Happiness is not static. Countries undergo economic 
cycles, political transitions, social reforms, and health 
crises (such as COVID-19). These comprise events 
which effect observable quantities within our 
dataset: 

● GDP per capita fluctuates yearly 
● Healthy life expectancy continues to rise but 

by different amounts regionally 

● The freedom to choose how one lives 
changes with the ebb and flow of regulation 
or politics. 

● Generosity trends evolve culturally 
● Corruption perceptions respond to reforms 

in governance 
Yet despite variation over time, the vast majority of 
happiness research treats national happiness as a 
fixed cross-sectional outcome and does not consider 
predictors as they evolve from year to year. 
Very limited work incorporates: 
 
Year-wise SHAP values 

● Temporal explainability 
● Event-driven happiness shifts 
● Longitudinal modelling of socioeconomic 

factors 
 
Our study addresses this by analyzing SHAP 
temporal trends using the Year column in your 
dataset, identifying how the importance of features 
changes from 2015 to 2023. 
For example: 
 
• Before COVID-19, GDP and freedom contributed 
more strongly. 
• During crisis years, social support and perceptions 
of corruption gained importance. 
Temporal interpretability reveals hidden socio-
economic dynamics that static models cannot 
capture. 
 
Challenges of Imbalance in Socioeconomic Data 
Though the happiness dataset is not class-
imbalanced like climate-event data, it 
presents distributional imbalance across: 

● regions (Western Europe > Sub-Saharan 
Africa) 

● income groups (high-income > lower-
income) 

● happiness ranges (far more mid-level 
scores than extremes) 

● categorical representation (region column is 
unevenly populated) 

 
Here's how that effects model training and 
explanation: 

 
● Models may overfit well-represented 

regions. 
● The instability of SHAP/LIME values for 

under-represented regions. 
● Models based on trees provide the potential 

for overstatement of patterns in compact 
clusters. 

● LIME fails when sampling proximate to 
data-sparse areas. 

However, the current literature still lacks a 
theoretical understanding about how a 



1006 

 

© 2025 Journal of International Commercial Law and Technology; Volume: 6: Issue: 1| All Right Reserved 

 

How to Cite: Goyal N, et al. Explaining Global Happiness Through XAI: A Multi-Model Interpretable Machine 
Learning Approach. J Int Commer Law Technol. 2025;6(1):1003–1023 
 

 
 

categorical distribution imbalance may influence 
interpretability in happiness prediction. 

      Our methodology mitigates this by: 
● comparing different models to see if findings 

are robust. 
● considering SHAP distributions for 

imbalance-induced skew. 
● incorporating region-wise interpretability 

examinations. 
● assessing stability of the models in different 

regions. 
● This ensures generalizability of results 

across the dominant clusters of country. 
 
Geographic and Cross-Regional Variability in 
Happiness Determinants 
Happiness is strongly influenced by regional context, 
which is well known but not often included in 
machine learning explainability studies. Your dataset 
has a region column that captures socio-geographical 
grouping across: 

● Western Europe 
● North America & ANZ 
● East Asia 
● South Asia 
● Sub-Saharan Africa 
● Latin America & Caribbean 
● Middle East & North Africa 
● Eastern Europe & CIS 

 
The various determinants of happiness differ across 
regions: 

● Healthy life expectancy and social support 
have been the most prominent predictors in 
Western Europe. 

● Freedom and generosity are the most 
influential in South Asia but show a great 
deal of variation. 

● Corruption perceptions and life expectancy 
are much more important in Sub-Saharan 
Africa. 

● Social cohesion and positive affect in Latin 
America typically overrule economic 
influences (GDP) to some extent. 

 
However, as is common with machine learning 
studies, this study does not assess regional-based 
SHAP values or compare LIME explanations between 
regions. 
Therefore, the purpose of this study is to fill these 
gaps by: 

● analyzing region-wise SHAP interactions 
● examining LIME explanations across 

countries 
● understanding how GDP vs. health vs. 

freedom influence regions differently 
● using SHAP interaction fields to show 

geographic feature interplay 
 

Gaps Identified in Literature 
A systematic review reveals six critical deficiencies: 
1. Overreliance on linear or single-model frameworks 
    - Most happiness models are shallow, missing 
nonlinearities. 
2. Limited use of advanced ML (CatBoost, LightGBM, 
XGBoost) 
    - Few happiness studies evaluate these models 
rigorously. 
3. XAI is severely underused in well-being prediction 
    -Especially SHAP–LIME combined analysis. 
4. No temporal explainability studies on happiness 
    -Year-wise interpretations are virtually absent. 
5. No cross-regional interpretability comparisons 
    -Regional differences in feature effects remain 
unexamined. 
6. Lack of model stability and consistency analysis 
    -No studies evaluate interpretability consistency 
across models. 
 
Addressing the Gaps Through This Study 
This research directly addresses the above 
deficiencies by introducing: 

● A multi-model happiness prediction 
framework including Linear Regression, 
Ridge, Lasso, Gradient Boosting, Random 
Forest, XGBoost, LightGBM, MLP, AdaBoost, 
and CatBoost. 
● A dual explainability pipeline combining 

global + local reasoning using: 
1. SHAP summary plots 
2. SHAP dependence plots 
3. Interaction fields 
4. LIME local explanations 
5. LIME aggregated importance 
6. SHAP–LIME mirror plots 
● Temporal SHAP analysis across 2015–

2023 
- Revealing how feature importance evolves. 

● Region-level explainability 
             - Using the dataset’s region feature to uncover 
geographic interpretation differences. 

● Stability assessment across models 
             - Comparing interpretability robustness 
across 12 ML models. 
 

Research Methodology 
This area discusses the entire way in which global 
happiness trends have been modeled and interpreted 
since 2015 through 2023. The process begins by 
examining the data for a better understanding of 
what is actually inside the data. This will lead the way 
to the data being cleaned, preprocessed and shaped 
for use by the models as well as training the models. 
Finally, the results of the models will be discussed in 
a manner that makes sense to humans, not simply 
machines. 
Unlike the reference IMDA climate forecasting study 
that focused on rapidly changing environmental 
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variables; our study did not. Our study has its focus 
on various social and economic factors, regional 
distinctions and several demographic indicators that 
contribute to peoples' perceptions of their own lives. 
Although the domain is quite different, the workflow 
is similar. We examine the data over time, we take 
into consideration the various geographic regions 
and we thoroughly evaluate all aspects of this project. 
Additionally, we attempt to provide an explanation of 
what is occurring (not to mention to avoid providing 
an unreadable explanation). 
The process is not complex; however, it does tell a 
story. A story of data, people and how their happiness 
is altered throughout the years and geographical 
boundaries — even though the process may seem a 
bit technical at first glance. 
 
DATASET DESCRIPTION 

The researchers use a global dataset provided by the 
World Happiness Report covering the years 2015-
2023. Each record represents a specific country in a 
given year and is characterized by features commonly 
associated with well-being research. 
Core Variables Included : 
 
• Life Ladder (Happiness Score) – target variable  
• gdp_per_capita – economic indicator  
• healthy_life_expectancy – health measure  
• social_support – social cohesion index  
• freedom_to_make_life_choices – autonomy score  
• generosity – prosocial behavior  
• perceptions_of_corruption – trust in institutions  
• Year – time period  
• Region (One-Hot Encoded) – 14 global regions, 
including East Asia, South Asia, Sub-Saharan Africa, 
Western Europe and others. 

 

 
 

Figure 1 Global Happiness Distribution (Life Ladder Histogram / KDE) 
 

This visualization depicts the statistical distribution of happiness scores across all countries and years. Some key 
observations include: 

● Most countries cluster between scores 4.5–6.5, 
● A left-tail of low-happiness regions (e.g., conflict-affected or low-income areas), 
● A right-tail of consistently high-performing countries. 

 
This mirrors the role of “event distribution plots” from the climate reference paper, helping establish baseline 
variability before modeling.  
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Figure 2 — Global Happiness Trend Over Time (2015–2023) 

 
 
Global happiness trends over time are shown using a global line plot; it calculates the average Life Ladder score for 
each year. Key points: 
• A mild decrease in global happiness occurs between 2015-2017. 
• Relative stagnation occurs globally from 2017-2019. 
• A notable dip occurs in 2020, possibly due to disruptions from the pandemic.   
• A strong rebound happens in 2021 and 2022, followed by a slight leveling off in 2023.   
This pattern is reminiscent of “climate temporal validation” in the reference paper, highlighting yearly trends that 
are important for forecasting.   
 
PREPROCESSING AND FEATURE ENGINEERING 
To have consistent data, be prepared for a model and allow comparison of years and areas; these preprocessing 
steps are somewhat akin to the structural cleaning performed with climate data, but are adapted to socio-economic 
data. 
Steps of Preprocessing 
• Treatment of Missing Values: 
- Because minimal missing values existed, median values for all numeric columns and mode for all categorical 
attributes, were used as imputation methods. 
• One-Hot Encoding of Categorical Region Fields: 
- Categorical regional fields were encoded into numeric fields because machine learning models require numeric 
input fields, and this method allowed preservation of spatial diversity while maintaining no ordinal structure for 
each category. 
• Scaling/Normalization (Model-Based): 
- Tree-based ensemble models do not need to scale, however, normalized versions can be created for other types of 
models such as logistic regression or gradient boosting if necessary. 
 
Feature Engineering 
Following the approach of “derived anomaly features” in the reference climate paper, engineered features were 
designed to capture temporal and regional variability: 

● Relative Year Index: 
A scaled time index to model long-term trends. 

● Interaction Features (for CatBoost and SHAP interaction plots): 
o GDP × Life Expectancy 
o Freedom × Social Support 
o Region × Year interactions 

● Rolling Temporal Smooth Features: 
Multi-year moving averages (3-year window) for Life Ladder to capture inertia in perception, similar to 
rolling climate statistics. 

 
These engineered features improved the model’s ability to detect subtle non-linear temporal and socio-economic 
interactions. 
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Figure 3 — Correlation Structure Among Core Socio-Economic Variables (2015–2023) 

 
A structured understanding of multicollinearity, feature redundancy, and possible interaction effects is made 
possible by the correlation heatmap, which shows the linear relationships between the major predictors used in 
this investigation. In line with previous socio-economic research, the matrix shows a number of strong positive 
correlations. For example, Life Ladder (happiness) is most strongly correlated with GDP per capita, healthy life 
expectancy, and social support, indicating that social support, health, and economic security all work together to 
support national well-being. 
Moderate links exist between the freedom to make life choices and perceptions of corruption, showing how 
governance affects subjective well-being. In contrast, generosity has weak connections with most variables. This 
suggests that generosity plays a separate role that does not directly relate to wealth or governance indicators. 
Methodologically, the relationship between these socio-economic indicators (like GDP and life expectancy) affects 
the choice of how to do "feature engineering." Variables with high correlations with one another (e.g., GDP and life 
expectancy) allow for the creation of interaction terms and non-linear combinations that are well-suited for 
decision trees such as CatBoost. Features that have low correlations among themselves can be treated as 
independent drivers of the dependent variable without substantially increasing the risk of multicollinearity. The 
diagnostic process described here parallels the reference climate study, in that the correlation analysis helped 
develop the anomaly features and multi-scale predictors; however, here the diagnostics were conducted with 
respect to the socio-economic factors affecting happiness. 
 
DATA CLEANING AND QUALITY CONTROL 
Quality control focused on ensuring valid ranges and removing inconsistencies:   
• Outlier Inspection:   

Extreme values in GDP and corruption perception were examined using boxplots. No removals were   required, 
but they were kept because they reflect real socio-economic conditions.   

• Temporal Completeness Check:   
   Verified that every year from 2015 to 2023 had adequate coverage across major regions.   
• Regional Balancing Review:   
Like “imbalanced spatial climate data,” some regions had fewer observations, such as Oceania. A significant class 
distribution bias/imbalance was noted and subsequently remedied with the use of CatBoost and Random Forest 
models; both are capable of handling imbalanced distributions of samples.This step ensures methodological 
soundness similar to the reference paper’s “quality control for multivariate climate sensors.”   
 
MACHINE LEARNING MODELS FOR FORECASTING 
A total of eleven supervised learning models were implemented to forecast happiness scores: 

1. Linear Regression 
2. Ridge Regression 
3. Lasso Regression 
4. KNN Regressor 
5. Random Forest Regressor 
6. Gradient Boosting Regressor 
7. AdaBoost Regressor 
8. XGBoost Regressor 
9. LightGBM Regressor 
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10. CatBoost Regressor (Best Model) 
11. Neural Network — MLP Regressor 

This diverse suite captures linear patterns, regional clusters, non-linear socio-economic interactions, and high-
order dependencies. 
 
MODEL SPECIFIC FEATURE ENGINEERING 
Different models required different preprocessing pipelines: 
Linear / Ridge / Lasso 

● StandardScaler applied 
● One-hot region encoding 
● Polynomial interactions tested 
● Suitable for baseline interpretability 

KNN 
● Min–Max scaler required 
● Distance-based modeling sensitive to feature magnitudes 

Random Forest 
● No scaling required 
● High variance reduction via feature bagging 
● Captures implicit interactions 

Gradient Boosting / AdaBoost / XGBoost / LightGBM 
● Interaction-aware engineered variables included 
● 3-year rolling average used for smoothing 
● Hyperparameters tuned with grid search 

CatBoost 
● Categorical encoding handled natively 
● Ordered boosting prevents leakage 
● Best-performing model for SHAP interpretability 

Neural Network (MLP) 
● Standardization mandatory 
● Hidden layers tuned to avoid overfitting 
● Early stopping applied 

 
EXPLAINABILITY FRAMEWORK 
In order to clarify and reformat the predictive models to become scientifically meaningful and realize them as more 
than opaque “black boxes”, a dual approach to modelling explainability was put into the use of SHAP and LIME which 
was a step towards an academic target of creating models with tradeoffs between accuracy and explainability.  
SHAP (SHapley Additive Explanations) was also used for global and local interpretability. To visualize and ascertain 
the most pertinent physical drivers of extreme events, global feature importance was mapped out through decision 
plots, bee-swarm plots and dependency graphs, as was also done by [1] where ‘Distance to Streams’ and 
‘Topographic Wetness Index’ were used to flood prediction. 
Local SHAP explanations are computed to decompose the forecasts to see which features impacted each prediction 
individually. This is in line with [7], where it was shown that the drivers of heatwaves varied over time, with features 
such as soil moisture becoming more important at longer forecast horizons. 
LIME (Local Interpretable Model-agnostic Explanations) is used as an explainability method to gain insights 
regarding a single forecast at the case level. This provided an additional perspective in which the contribution of 
features for individual extreme climate events was explainable as it offered interpretability in a multi-level manner 
[11]. 
 
EXPERIMENTAL SETUP 
This part reports on the design of the study which we used to train, validate, and evaluate eleven machine learning 
models that we developed for global happiness score prediction. We put in a very rigorous and reproducible 
protocol which we designed to level the playing field between models, which also helps to avoid issues of data 
leakage and which looks at not just predictive performance but also the issue of probabilistic reliability. Also what 
we present here is very much in the methodological depth of the referenced paper we based this off of but we have 
full adapted it for social economic forecasting as opposed to climate event prediction. 
 
TRAINING AND VALIDATION STRATEGY 
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A strict training–validation procedure was employed to guarantee good generality of the trained models on all 
geographical areas and at all times in history. The data from climate studies can be split using events; for the 
happiness data, the data must be preserved with respect to both time and geography. 
 
Chronological Time-Based Splitting 
To avoid future information leaking into past predictions: 

● Training set: 2015–2021 
● Validation set: 2022 
● Test set: 2023 

In order to have an accurate model of future data with respect to what the model learns (a required feature in any 
true forecasting system). 
 
Region-Stratified K-Fold Cross-Validation 
When undertaking model training, a Stratified 5-Fold Cross-Validation approach was adopted to partition the data 
into five groups by global region (e.g., Western Europe, South Asia, Latin America) 
Benefits: 

● Maintains equal regional representation in each fold 
● Prevents models from becoming biased toward highly represented regions 
● Ensures consistent performance across diverse socio-economic clusters 

 
Hyperparameter Optimization 
Hyperparameters were systematically tuned in each model to be fair when comparing different models. 
GridSearchCV was utilized to search through combinations of all possible hyperparameters for each model: 

● Random Forest 
● Gradient Boosting 
● AdaBoost 
● XGBoost 
● LightGBM 
● Ridge 
● Lasso 
● KNN 
● MLP 

CatBoost Optimization 
CatBoost used: 

● Ordered Boosting 
● Internal Bayesian parameter search 
● In-built handling of categorical encodings 

This contributed to CatBoost emerging as the strongest model overall. 
 
Training Stability Controls 
To enhance consistency and prevent overfitting: 

● Early Stopping (CatBoost, LightGBM, XGBoost, MLP) 
● Learning Rate Scheduling for boosting models 
● Regularization (L1/L2) for linear models 
● Tree Depth and Leaf Constraints for ensemble models 
● Batch Normalization within MLP for stability 

 
EVALUATION METRICS 
To comprehensively assess the predictive capability of each model, multiple regression and calibration metrics 
were used. Unlike classification, happiness prediction is a continuous regression problem, so numerical error 
metrics were prioritized alongside reliability metrics. 
Accuracy gauges how many times the model made the correct predictions counted to all cases. While it is simple to 
use and intuitive, it can also yield misleading insights with imbalanced sets, because a model can achieve high 
accuracy on a dataset that is largely dominated by the majority class. 

Accuracy= 
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+ 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

 
Precision measures how many of the predicted extreme events were actually true extreme events. High precision 
rates would mean fewer false alarms which are important to maintain confidence and to reduce unnecessary alerts. 
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Precision = 
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

Recall measures how many real extreme events were predicted by the model correctly. In disaster management, 
having high recall is important the consequences for missing a real event can be devastating. 

Recall = 
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

F1-Score measures the harmonic mean of both precision and recall making its utility is to balance both metrics. A 
high F1-Score indicates the model is doing well in flagging true events while minimizing false alarms. 

F1score = 2×
    𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 

 ROC-AUC statistics compare the model's overall ability to differentiate between classes calculating performance 
metrics at all thresholds. A higher AUC indicates a better discrimination, where 1.0 indicates perfect prediction and 
AUC of 0.5 indicates random guessing. 

AUC = ∑𝑛−1
𝑖=1 (𝐹𝑃𝑅𝑖+1 − 𝐹𝑃𝑅𝑖) ×

𝑇𝑃𝑅𝑖+1+ 𝑇𝑃𝑅𝑖

2
 

 
PR-AUC score focuses on the positive class and therefore provide a more useful metric in the case of imbalanced 
dataset. PR-AUC score provides the trade-off of precision as recall improves in relation to predicted extreme events 
true; essentially it tells you how well you have identified rare true events. 
 
Brier Score can be used to numerically measure the difference between predicted probabilities and the true 
outcomes where lower scores indicates better calibrated and more reliable predicted probabilities. 
 

 
Figure 4: Calibration curve for the catboost model 

 
Interpretation: 

● The dashed red diagonal = perfect calibration 
● The blue curve = CatBoost’s actual probability estimates 
● The proximity of the blue curve to the diagonal indicates excellent probabilistic alignment 
● Minimal deviations suggest strong stability across mid-range probability values 
● Demonstrates CatBoost’s reliability beyond simple prediction accuracy 

This reinforces that CatBoost is not only accurate but also trustworthy, a critical requirement for socio-economic 
decision-making. 
 
RESULTS AND DISCUSSIONS 
This part is a systematic review of model performance, global and local explanation of results, and empirical 
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evidence regarding the social/economic factors that influence global well-being. Unlike typical overall reports about 
the performance of models; this framework provides an insight into how each model arrived at its prediction(s), 
which attributes are structurally important in determining the model's predictive accuracy, and how those 
relationships may differ by country, year, or region. 
We have applied 11 different machine learning models (from a baseline linear model through to ensemble methods: 
CatBoost, LightGBM, XGBoost, Gradient Boosting, AdaBoost, K-Nearest Neighbors, Lasso, Ridge, Multilayer 
Perceptron, Random Forest) in order to show a repeated trend: all current boosting models significantly outperform 
all older statistical models. 
 
PERFORMANCE ANALYSIS 
The performance of the implemented models was evaluated using RMSE, MAE, R², and the correlation coefficient. A 
condensed comparative table is presented below: 
 
 

 
 
Interpretation 
The results demonstrate a clear ordering: 

● CatBoost stands as the dominant model with the lowest RMSE/MAE and the highest R² and correlation. 
● LightGBM, Random Forest, and XGBoost follow closely, confirming the strength of boosting-based 

methods in capturing non-linear socio-economic interactions. 
● Classical regression methods yield substantially weaker performance, reflecting their inability to model 

complex, multi-dimensional relationships in global happiness data. 
 
SHAP ANALYSIS — GLOBAL & FEATURE-LEVEL INSIGHTS 

This section examines how the best-performing model (CatBoost) arrives at its predictions using SHAP. 
SHAP allows us to view: 

● Global importance (which features matter most overall) 
● Feature-level behaviour (how the influence increases/decreases) 
● Interactions (how features amplify or moderate each other) 
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Figure5: SHAP Global Feature Importance (Bar Chart) 

 
A global SHAP bar chart demonstrates the stability of influence hierarchy: 
1. GDP per capita is the strongest and most consistent global influencer. 
2. Healthy life expectancy represents long-term structural well-being. 
3. Social support represents interpersonal stability. 
4. Freedom to make life choices represent the happiness multiplier function of autonomy. 
5. Regional identifiers are contextual and therefore represent secondary effects. 
6. Perceptions of corruption have moderate global effects. 
7. Generosity & Year represent less than strong, however they are still non-negligible global effects. 
These rankings demonstrate the validity of the model's interpretability since they mirror well-established 
sociological theories of well-being. 
 

 
 

Figure 6: Global SHAP Heatmap 
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Meaning: 
The heatmap provides sample-level granularity, revealing: 

● The heat map visualizes and shows sample level data 
● Vertical bands of the heat map show stable global driver variables 
●  Patterns of red/blue values alternate in some areas as an indication of possible non-linear contextual 

effects 
● Social support has higher uniformity and is confirmed to be always important across all countries 
● Visualization provides evidence that the model's decision making remains consistent throughout and 

structurally coherent 
 

This visualization proves the model’s decisions remain consistent and structurally coherent. 
 

 
 

Figure 7: SHAP Beehive Density Plot 
 
Interpretation: 
The beehive plot reveals: 

● Broad variation of SHAP values for country level variables in terms of economic development (GDP/capita), 
political freedoms and social support which confirms that these features have a large amount of impact on 
the model 

● Small, tight distributions for regional features → context-dependent and less globally dominant 
● Long right-tails for supportive features → high values strongly increase predicted happiness 

This reinforces the non-uniform effect of features across countries. 
 
 
 

 
Figure 7: SHAP Dependence Plot — GDP per capita 

 
Meaning: 
Show a monotonic non-linear increase in SHAP values as GDP increases. 
Color gradient (life expectancy shading) reveals: 
High GDP + high life expectancy = strongest positive effect. 
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Figure 8: SHAP Dependence Plot — Social Support 

 
Meaning: 
Strong almost linear increase: 
Countries with robust social support systems tend to have higher Life Ladder score predictions. 
The color gradient (GDP shading) demonstrates: 
Social support has the greatest impact when combined with high GDP. 
 

 
Figure 9: SHAP Interaction Field (Freedom × Year × SHAP Influence) 

 
Interpretation: 
This multi-dimensional interaction shows: 

● A rising trend of freedom influencing happiness more strongly in recent years 
● Higher concentrations of red (positive SHAP influence) after 2020 
● Clustering of high-freedom countries forming dense upward trajectories 

This indicates that over time, freedom has become even stronger at explaining outcomes. 
 
LIME ANALYSIS — LOCAL EXPLANATION CASE STUDIES 

Whereas SHAP will give you a broad understanding of the overall model's behavior, LIME will provide you an 
intuitive explanation for how the model made its prediction on an individual country-by-country basis. 
While SHAP gives you a global perspective on your model, LIME (Local Interpretable Model-Agnostic Explanations) 
gives you case-specific explanations for each country's individual predictions. 
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Figure 10: LIME Feature Weights Across Multiple Samples (CatBoost) 

 
The chart illustrates that the LIME feature weight for each feature varies by unique individual sample. The bar 
clusters are representative of the respective feature ranges or categories for a given sample, while the three colors 
(Sample 3, Sample 10, Sample 55) represent how a single feature can contribute to varying degrees in the decision-
making process based upon the socio-economic characteristics of each respective country. The chart demonstrates 
the localized nature of LIME, as compared to the globally consistent results provided through SHAP, which further 
identifies the manner in which decision-rules change with each new sample. 
 

 
 

Figure 11: LIME Aggregated Heatmap 
 

Insights: 
This heatmap demonstrates how LIME explanations are being explained over a number of samples. 
• GDP per capita is dominant across nearly every sample. 
• Weights for regional indicators are very different from one another → cultural/Geographical differences matter; 
• Both Freedom and Social Support have consistently positive weights. 
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The cross sample visualization supports the idea that the way we locally explain our data (via LIME) will match the 
way we globally explain it via SHAP structure thereby increasing the confidence in the model. 
 

 
Figure12 : SHAP–LIME Mirror Plot 

 
Explanation: 
This mirror-style comparison highlights: 

● High agreement on top features (GDP, life expectancy, support, freedom) 
● Differences on region-based variables (LIME more sensitive locally) 
● Balanced interpretability across both global and local axes 

This ensures both explainers validate each other, reducing interpretability bias. 
 

 
Figure13 : 3D Explainability Surface 

 
Meaning: 
This 3D visualization integrates: 

● Year 
● Freedom 
● Model Output (Happiness) 

It reveals evolving temporal dynamics in the determinants of well-being, showing: 
● A noticeable upward drift post-2020 
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● Greater spread in predictions for mid-freedom countries 
● Clustered peaks where both freedom and GDP are high 

This visually demonstrates how socio-economic landscapes shift across time and influence model behaviour. 
 
 CONCLUSION 
The research developed and tested a large, 
understandable machine learning framework for 
modelling and explaining the level of happiness of 
countries around the world between 2015 and 2023. 
As demonstrated in this study, high-performance 
prediction and explainable interpretation may be 
achieved together in a single analytic workflow, 
particularly if advanced ensemble models (e.g., 
CatBoost) are combined with dual-interpretation 
methods (e.g., SHAP and LIME). 
CatBoost was the best performing model out of 
eleven (Linear Regression, Ridge, Lasso, KNN, 
Gradient Boosting, AdaBoost, XGBoost, LightGBM, 
MLP, Random Forest, and CatBoost), with the 
following values: R² = .8529; RMSE = .426; MAE = 
.325; Correlation = .924. These results demonstrate 
how well gradient-boosted decision trees perform in 
identifying non-linear social-economic interactions 
and global factors impacting a nation's overall 
wellbeing. 
In addition to developing a new model, the research 
embedded both SHAP and LIME interpretations into 
the analysis to make the often opaque field of 
regression modeling into a transparent, logical 
inferential process — making it possible to identify 
the factors driving happiness predictions as 
measurable and comparable across all nations. 
 
6.1 KEY FINDINGS 
Model Performance and CatBoost Superiority 
Model Performance and CatBoost Dominance 
There was considerable difference in the 
performance of the 11 models tested. The traditional 
linear models (Linear, Ridge, Lasso) showed 
reasonable performance (R² ≈ 0.78), while non-linear 
models (Random Forest, XGBoost, Gradient Boosting, 
LightGBM) produced much higher predictive power. 
However, one model - CatBoost - had no peer for 
superior performance: 

● Highest R²: 0.8529 
● Lowest RMSE: 0.426 
● Lowest MAE: 0.325 
● Strongest Correlation: 0.924 

These results indicate that socio-economic and well-
being indicators such as GDP per capita, healthy life 
expectancy, social support, and freedom-to-make-
life-choices interact in complex, non-linear ways—
patterns effectively captured by CatBoost’s ordered 
boosting strategy and categorical handling. 
There is an overall trend that can be observed in the 
ranking of models: 
Ensemble models based on trees are better than 
statistical models; and CatBoost is better than 
ensemble models. 

 
                                                        Feature Engineering 
Impact 
 
Adding temporal and multiple year moving average 
indicators (i.e., the broad global and national trends 
for years), along with interaction indicators (e.g., GDP 
* Life Expectancy or Freedom * Social Support) all 
enhanced the model's predictive capabilities 
significantly. 
Temporal SHAP trends show countries where there 
was long-term economic and social progress 
demonstrate positively trending patterns of 
perceived wellbeing over time. 
Interaction Terms Indicate Complex Relationships 
Between Variables: 
Moving averages enable the model to identify 
structural stability, thus enabling the model to 
differentiate between short-term fluctuations in the 
data and longer-term trends in the data itself. For 
instance, increases in GDP have been shown to be 
positively correlated with increases in life 
expectancy, demonstrating a positive correlation to a 
national developmental process. 
Engineered features provided the model with greater 
insight into the structural relationships between 
different socio-economic paths and resultant 
wellbeing outcomes and therefore allowed for better 
understanding of how each feature contributed to the 
overall wellbeing predictions. 
SHAP explainability insights allowed the model to 
thoroughly dissect the manner in which each 
attribute contributes to the prediction of wellbeing. 
Key findings globally: 
• Worldwide GDP per capita had the greatest 
influence on estimated happiness levels. 
• A human-centric group of variables, including social 
support, ability to make your own choices in life, and 
longevity, consistently contributed to happiness 
estimates around the world. 
• Benefits derived from strong social structures were 
magnified when strong economies existed (SHAP 
interaction values). 
Three key lessons were found using SHAP: 
1. Cohesion: Ranking of each feature was consistent 
over years and geographically. 
2. Non-Linearities: Many of the features produced 
non-linear results; for instance, the contribution to 
GDP increased rapidly at the higher end of the 
threshold range. 
3. Interdependencies: Happiness is shaped by 
interdependent combinations of social support, 
health status, and infrastructure indicators rather 
than singular measurements. 
Regional Interpretation Using Local Interpretable 
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Model-agnostic Explanations (LIME) 
While SHAP provides explanation for average 
behavior of all nations, LIME identified individual 
country explanations for each nation. 
• Different weightings were assigned to LIME weights 
across different nations, thereby validating the 
diversity of local socio-economic profiles. 
• Some nations have been shown to be highly 
sensitive to social support, whereas other nations are 
more responsive to GDP and/or freedom indicators. 
• The variation between samples emphasized the 
importance of regional context in defining 
determinants of happiness. 
Thus, together, the SHAP–LIME framework provides 
both global explanations and country-by-country 
clarification for an understanding of how happiness 
is defined. 

6.2 LIMITATIONS 
 
Despite strong predictive and explanatory outcomes, 
several limitations constrain broader deployment: 
• Temporal Constraints 
The dataset spans 2015–2023 only. Although recent, 
this period may not fully represent long-term socio-
economic evolution, particularly for transitioning 
economies. 
• Spatial & Regional Bias 
Some regions (e.g., Western Europe) have denser 
samples and higher data completeness than others 
(e.g., Sub-Saharan Africa). 
This may skew learning toward structurally stable 
economies. 
• Measurement Uncertainty 
World Happiness data relies partly on subjective 
survey responses. Differences in cultural expression, 
optimism bias, and survey methodology may 
introduce measurement variance that the model 
cannot fully capture. 
• Interaction Complexity 
Although CatBoost captures non-linearities, very 

deep socio-cultural factors (political climate, cultural 
norms, governance quality) are not fully represented 
in the dataset. 
• Computational Cost 
SHAP value computation—especially interaction 
SHAP—can be computationally heavy for large 
datasets, limiting real-time deployment. 
• Lack of Causal Interpretation 
The model offers associative rather 
than causal explanations. 
GDP and life expectancy correlate strongly with 
happiness but cannot be claimed as direct causal 
drivers without broader socio-economic modelling. 
 

6.3 FUTURE DIRECTIONS 
Multi-modal integration of various types of data is 
expected in future research. The addition of 
education quality; income inequality; political 
stability indices; environmental indicators; and 
digital infrastructure may add to predictive capacity 
by adding previously unmodeled social-economic 
dimensions. 
Extensions of deep learning: 
Tree-based models are excellent, however, as neural 
frameworks such as LSTMs and transformers have 
shown, they are capable of modeling long term 
temporal behavior within happiness datasets; 
including the transition of generations and the 
impacts of policies. 
Causal modeling: 
The addition of structural causal models or 
instrumental variable based modeling would provide 
deeper insights into policy interventions. 
Operational Dashboards and Real Time Monitoring: 
Development of operational dashboards for 
government agencies; international development 
organizations; and think tanks focused on social 
policy would assist in translating model outputs into 
real time decision making. 

Cross Cultural Generalizability: 
It is expected that researchers will assess whether models trained on global data can be generalized equally well 
across different local cultural contexts. 
 

 
Figure 14: Model Performance Comparison Across All Algorithms 
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CatBoost has proven to be the most reliable and consistent model among all models compared in this study with 
respect to RMSE, MAE, R2 and correlation as shown through its strong performance in comparison of models in the 
graph provided. 
CatBoost's great performance in both fitting the data (highest R2 and correlation) and minimizing errors (lowest 
RMSE / MAE) indicates that the model does an excellent job at fitting the data and also does a good job at making 
predictions regardless of the social-economic context. 
The visual evidence presented here supports that CatBoost is the preferred method for use in the interpretability 
framework using SHAP and LIME and it is able to combine the multiple methods from the study into one. 
It can be clearly concluded that advanced gradient-boosting based architectures are the best way to simulate the 
dynamic aspects of global happiness. 
 

                        
                            
                                      Figure 15 :Temporal Trend of Global Happiness Scores (2015–2023)  
 
The temporal trend graph represents a macro-level view of the dataset and displays a trend line of global happiness 
over the nine year time span as relatively stable yet somewhat volatile. The fact that there are significant regional 
variations in the data and that the global mean remains resilient indicates that the aforementioned factors such as 
GDP/capita, social support and life expectancy continue to be structurally impactful on a longer term basis. This 
graph demonstrates the ability of the model to create reliable predictions across changing global environments and 
adds to the study’s central argument that the socioeconomic determinants of wellbeing are both statistically 
significant and temporally persistent. 
Additionally, this graph demonstrates that the machine learning interpretation methods employed in the study are 
consistent with observable global trends, providing a broader real world context to the research findings. 
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Figure 16 :Global Feature Contribution Distribution 

 
The pie chart represents the models inner workings in a concise, easy-to-understand manner. The primary drivers 
of the models overall explanation are the same predictors as those of the existing body of knowledge from happiness 
research, including GDP/capita, healthy life expectancy, social support, and freedoms to make choices in one’s life. 
This lends additional credence to the study’s narrative regarding the interpretability of the CatBoost model being 
accurate and rational, based upon empirically derived socioeconomic theories. 
Further evidence supporting the credibility of the predictive engine and SHAP/LIME interpretative frameworks is 
demonstrated through their alignment with established Human Development Indicators (HDI) that represent global 
trends in human development. 
Finally, the pie chart provides an overarching summary of the studies findings: global happiness has four primary 
determinants – economic security, health, autonomy and social cohesion – which it views as multi-faceted 
phenomena
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