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Machine Learning

Abstract: [t has become a significant subject in economics, human
behavior, and public policy to find out what affects people's well-
being the most. There are various methods that can show the
relationship between income, social life, and life satisfaction, but
the majority of them do not provide an explanation of how these
things interact in real life. A new and efficient way of predicting
happiness levels using data from the World Happiness Report is
presented by the current research. Out of eleven machine-learning
models, CatBoost was the one that yielded the most precise
results. To facilitate better understanding of the predictions, SHAP
and LIME were employed to illustrate the impact of each variable
on the outcomes. Among the factors highlighted in the results,
income, social support, healthy life expectancy, freedom of choice,
and government trust are the most influential ones for happiness.
Furthermore, the study shows that the degree of significance of
these factors differs from region to region. The research by linking
accurate predictions with straightforward interpretations pro
vides policy-makers with valuable information for their lifetime
quality enhancement goals.

Keywords: XAI, SHAP, LIME, world happiness index.

INTRODUCTION

BACKGROUND AND MOTIVATION

People are at a point where we see happiness as a
great indicator of a country’s health which in turn is a
result of more than just economy or health but also
social and emotional health. What we are also seeing
is that governments and international organizations
have bought into the idea that for true well being of a
person that which determines health is a wider set of
factors. While GDP, inflation and productivity still are

issues of import, in the past decade what has come to
the fore is the importance of how people report to feel
about their lives which in turn we use to better
improve policies which in turn improve life.

A significant factor in this change is the World
Happiness Report. It considers a variety of factors,
such as social support, health, freedom, and trust in
the government, rather than just wealth. Combining
all of these elements provides a far more
comprehensive view of how life is going in various
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nations and helps identify the key elements that go
into leading a fulfilling life.

Despite all the data available, determining the way
that these many individual factors interact is difficult.
Many of the factors previously discussed; income
levels, life expectancy, personal freedoms, healthy
relationships, institutional trust, etc. have an
interconnection that is difficult for traditional
statistical analysis to accurately capture.

Due to the limitations of traditional statistical
methods to capture the complexities of societies,
there is increasing use of Machine Learning to
determine the underlying factors of happiness.
Models of Machine Learning, especially ensemble
methods and Gradient Boosting models are highly
sought after due to their ability to shift through large
amounts of social data and discover relationships
between variables that may be too complex for
traditional models to detect. Additionally, they are
better able to account for the complex non-linear
relationships that exist between variables affecting
individuals' overall well-being.

Although the ability of Machine Learning models to
find hidden relationships is a major advantage, this
same property also causes a drawback: Machine
Learning models are typically opaque. Their decision-
making process is largely unknown. Therefore, it is
not always easy to determine which factors are the
most influential in a model prediction of an
individual's happiness level or why a model predicted
a particular level of happiness.

A lack of understanding of a model's behavior limits
its applicability for the three primary uses of models:
policy-making, social research and development
planning. Millions of lives can be affected by the
decisions based on the output of a model. Therefore,
stakeholders require transparency and clarity into
the workings of models in order to build trust and
take action on those outputs. In response to this
limitation, the field has moved toward Explainable Al
(XAI), which includes a variety of techniques to
provide insight into the decision-making process of
Machine Learning models.

Among XAI techniques, SHAP (SHapley Additive
Explanations) and LIME (Local Interpretable Model-
Agnostic Explanations) have become the most
influential because of their strong theory and useful
applications. SHAP gives global and local
explanations based on cooperative game theory.
LIME creates easy-to-understand local models

This study aims to combine high prediction accuracy
with deep interpretability for estimating global
happiness. It compares five different machine
learning algorithms to find the best one to predict
happiness: Linear Regression, Gradient Boosting,
Random Forest, AdaBoost and particularly CatBoost.
In addition, researchers applied SHAP and LIME for
interpretability. The researchers aim to develop a
reliable method to understand the causes of global

happiness. Thus, researchers want to be able to
correctly predict happiness scores and to describe
the relationships between socioeconomic,
demographic and regional variables in their ability to
predict happiness scores.

Atlast, the researchers provide an accurate analytical
base on which social scientists, international
organizations and policy makers can establish
evidence-based strategies for increasing the well-
being of nations.

Literature Review

Economists, psychologists, social scientists, and
policymakers have typically been responsible for
understanding happiness around the world. We can
now  measure  well-being using  precise
socioeconomic indicators thanks to large-scale
international surveys like the World Happiness
Report. These include perceptions of corruption,
generosity, freedom to make life decisions, social
support, GDP per capita, and healthy life expectancy.
Both objective and subjective components of national
well-being are reflected in these factors, which are
displayed in our dataset from 2015 to 2023.
Correlation-based analysis and linear regression
models were key components of traditional research
in this field. These techniques assisted in
demonstrating broad connections between life
satisfaction measures and predictors. They do,
however, make the potentially restrictive
assumptions of linearity and independence among
features. In actuality, complex interactions are the
source of happiness. Social cohesion and economic
prosperity interact. Income has an impact on health
infrastructure. Freedom and confidence in
government are impacted by perceptions of
corruption.

Machine learning has emerged as a potent substitute
due to advancements in computational modeling.
Multi-dimensional socioeconomic patterns, feature
interactions, and nonlinear relationships can all be
captured by it. Research utilizing Random Forest,
Gradient Boosting, and Neural Networks to forecast
well-being and quality of life has demonstrated
notable improvements in prediction accuracy. These
models are not interpretable, though. This creates
problems for public policy, where logic and openness
are crucial.

Explainable Artificial Intelligence (XAI) is now highly
needed in socioeconomic modeling as a result of this.
Interpretative, model-agnostic analysis is made
possible by methods such as SHAP (Shapley Additive
Explanations) and LIME. They illustrate the relative
contributions of each variable to the expected levels
of happiness, such as gdp per capita, healthy life
expectancy, and perceptions of corruption. These
interpretability tools ensure that predictions align
with ethical responsibility, human reasoning, and
policymakers' expectations.
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The literature review that follows outlines earlier
research and points out gaps in explainable
socioeconomic prediction in order to set the scene for
this study.

Explainable Al in Socioeconomic and Happiness
Modelling

Al has been used more and more in the last few years
to look at social and economic trends because there
are now more global datasets available. Tree-based
machine learning models, like Random Forest,
XGBoost, LightGBM, and CatBoost, have shown that
they can accurately predict well-being scores. These
models show how social support, personal freedom,
and healthy life expectancy are all connected in a
messy, non-linear way. This gives us a picture that
looks a lot more like how people really act.

But there’s one problem: all these are models we can
barely interpret, no matter how technically powerful
they may be. When it comes to that, being right isn’t
enough. This is the desire for interpretable model
decisions. They want to know why happiness is
increasing in some places and decreasing in others,
and what specifically are the variables that drive
those patterns. Without that clarity, even the best
predictions can appear to fall apart in real-world
decision making.

Explainable Al helps to close this gap by offering
context around a model’s predictions, not just their
results. For example, SHAP employs cooperative
game theory concepts to break down the relative
importance of each feature toward a model
prediction. LIME takes a different approach, focusing
on providing interpretable explanations for each
prediction (i.e, what the underlying reasons are,
why one country ended up more or less happy than
another).

So far, there hasn’t been much research using
explainable Al for socioeconomic forecasting. Most
existing studies focus on areas like poverty detection
or basic well-being classification. Very few have used
both SHAP and LIME together for global happiness
prediction, and almost none have compared what
these explainers reveal across several advanced
machine learning models.

This gap is exactly what motivates our use of a dual-
explainer interpretability setup.

Temporal Dynamics and Year-Wise Happiness
Prediction
Happiness is not static. Countries undergo economic
cycles, political transitions, social reforms, and health
crises (such as COVID-19). These comprise events
which effect observable quantities within our
dataset:

e GDP per capita fluctuates yearly

e Healthy life expectancy continues to rise but

by different amounts regionally

e The freedom to choose how one lives
changes with the ebb and flow of regulation
or politics.

e Generosity trends evolve culturally

e Corruption perceptions respond to reforms
in governance

Yet despite variation over time, the vast majority of
happiness research treats national happiness as a
fixed cross-sectional outcome and does not consider
predictors as they evolve from year to year.

Very limited work incorporates:

Year-wise SHAP values
e Temporal explainability
e Event-driven happiness shifts
e Longitudinal modelling of socioeconomic
factors

Our study addresses this by analyzing SHAP
temporal trends using the Year column in your
dataset, identifying how the importance of features
changes from 2015 to 2023.

For example:

e Before COVID-19, GDP and freedom contributed
more strongly.
* During crisis years, social support and perceptions
of corruption gained importance.

Temporal interpretability reveals hidden socio-
economic dynamics that static models cannot
capture.

Challenges of Imbalance in Socioeconomic Data
Though the happiness dataset is not class-
imbalanced like climate-event data, it
presents distributional imbalance across:
e regions (Western Europe > Sub-Saharan
Africa)
e income groups (high-income > lower-
income)
e happiness ranges (far more mid-level
scores than extremes)
e categorical representation (region column is
unevenly populated)

Here's how that effects model training and
explanation:

e Models may overfit well-represented
regions.

e The instability of SHAP/LIME values for
under-represented regions.

e Models based on trees provide the potential
for overstatement of patterns in compact
clusters.

e LIME fails when sampling proximate to
data-sparse areas.

However, the current literature still lacks a

theoretical  understanding about how a
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categorical distribution imbalance may influence
interpretability in happiness prediction.
Our methodology mitigates this by:

e comparing different models to see if findings
are robust.

e considering SHAP  distributions  for
imbalance-induced skew.

e incorporating region-wise interpretability
examinations.

e assessing stability of the models in different
regions.

e This ensures generalizability of results
across the dominant clusters of country.

Geographic and Cross-Regional Variability in
Happiness Determinants
Happiness is strongly influenced by regional context,
which is well known but not often included in
machine learning explainability studies. Your dataset
has a region column that captures socio-geographical
grouping across:

e Western Europe
North America & ANZ
East Asia
South Asia
Sub-Saharan Africa
Latin America & Caribbean
Middle East & North Africa
Eastern Europe & CIS

The various determinants of happiness differ across
regions:

e Healthy life expectancy and social support
have been the most prominent predictors in
Western Europe.

e Freedom and generosity are the most
influential in South Asia but show a great
deal of variation.

e Corruption perceptions and life expectancy
are much more important in Sub-Saharan
Africa.

e Social cohesion and positive affect in Latin
America typically overrule economic
influences (GDP) to some extent.

However, as is common with machine learning
studies, this study does not assess regional-based
SHAP values or compare LIME explanations between
regions.
Therefore, the purpose of this study is to fill these
gaps by:
e analyzing region-wise SHAP interactions
e examining LIME explanations across
countries
e understanding how GDP vs. health vs.
freedom influence regions differently
e using SHAP interaction fields to show
geographic feature interplay

Gaps Identified in Literature

A systematic review reveals six critical deficiencies:

1. Overreliance on linear or single-model frameworks
- Most happiness models are shallow, missing

nonlinearities.

2. Limited use of advanced ML (CatBoost, LightGBM,

XGBoost)
- Few happiness studies evaluate these models

rigorously.

3. XAl is severely underused in well-being prediction
-Especially SHAP-LIME combined analysis.

4. No temporal explainability studies on happiness
-Year-wise interpretations are virtually absent.

5. No cross-regional interpretability comparisons
-Regional differences in feature effects remain

unexamined.

6. Lack of model stability and consistency analysis
-No studies evaluate interpretability consistency

across models.

Addressing the Gaps Through This Study
This research directly addresses the above
deficiencies by introducing:

e A multi-model happiness prediction
framework including Linear Regression,
Ridge, Lasso, Gradient Boosting, Random
Forest, XGBoost, LightGBM, MLP, AdaBoost,
and CatBoost.

e A dual explainability pipeline combining
global + local reasoning using:
SHAP summary plots
SHAP dependence plots
Interaction fields
LIME local explanations
LIME aggregated importance
SHAP-LIME mirror plots
e Temporal SHAP analysis across 2015-
2023
- Revealing how feature importance evolves.
e Region-level explainability
- Using the dataset’s region feature to uncover
geographic interpretation differences.
e Stability assessment across models
- Comparing interpretability robustness
across 12 ML models.

oUW

Research Methodology

This area discusses the entire way in which global
happiness trends have been modeled and interpreted
since 2015 through 2023. The process begins by
examining the data for a better understanding of
what is actually inside the data. This will lead the way
to the data being cleaned, preprocessed and shaped
for use by the models as well as training the models.
Finally, the results of the models will be discussed in
a manner that makes sense to humans, not simply
machines.

Unlike the reference IMDA climate forecasting study
that focused on rapidly changing environmental
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variables; our study did not. Our study has its focus
on various social and economic factors, regional
distinctions and several demographic indicators that
contribute to peoples' perceptions of their own lives.
Although the domain is quite different, the workflow
is similar. We examine the data over time, we take
into consideration the various geographic regions
and we thoroughly evaluate all aspects of this project.
Additionally, we attempt to provide an explanation of
what is occurring (not to mention to avoid providing
an unreadable explanation).

The process is not complex; however, it does tell a
story. A story of data, people and how their happiness
is altered throughout the years and geographical
boundaries — even though the process may seem a
bit technical at first glance.

DATASET DESCRIPTION

The researchers use a global dataset provided by the
World Happiness Report covering the years 2015-
2023. Each record represents a specific country in a
given year and is characterized by features commonly
associated with well-being research.

Core Variables Included :

e Life Ladder (Happiness Score) - target variable

e gdp_per_capita - economic indicator

e healthy_life_expectancy - health measure

e social_support - social cohesion index

« freedom_to_make_life_choices - autonomy score

e generosity - prosocial behavior

e perceptions_of_corruption - trust in institutions

e Year - time period

e Region (One-Hot Encoded) - 14 global regions,
including East Asia, South Asia, Sub-Saharan Africa,
Western Europe and others.

Global Happiness Score Distribution (2015-2023)
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Figure 1 Global Happiness Distribution (Life Ladder Histogram / KDE)

This visualization depicts the statistical distribution of happiness scores across all countries and years. Some key

observations include:

e Most countries cluster between scores 4.5-6.5,

o  Aleft-tail of low-happiness regions (e.g., conflict-affected or low-income areas),
e Aright-tail of consistently high-performing countries.

This mirrors the role of “event distribution plots” from the climate reference paper, helping establish baseline

variability before modeling.
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Global Happiness Trend Over Time (2015-2023)

5.550¢
5525t
5.500
5.475}
5.450 ¢
5.425¢

5.400¢r

Average Happiness Score (Life Ladder)

5375t

5.350¢

2015 2016 2017 2018 2019 2020 2021 2022 2023
Year

Figure 2 — Global Happiness Trend Over Time (2015-2023)

Global happiness trends over time are shown using a global line plot; it calculates the average Life Ladder score for
each year. Key points:

¢ A mild decrease in global happiness occurs between 2015-2017.

« Relative stagnation occurs globally from 2017-2019.

* A notable dip occurs in 2020, possibly due to disruptions from the pandemic.

« A strong rebound happens in 2021 and 2022, followed by a slight leveling off in 2023.

This pattern is reminiscent of “climate temporal validation” in the reference paper, highlighting yearly trends that
are important for forecasting.

PREPROCESSING AND FEATURE ENGINEERING

To have consistent data, be prepared for a model and allow comparison of years and areas; these preprocessing
steps are somewhat akin to the structural cleaning performed with climate data, but are adapted to socio-economic
data.

Steps of Preprocessing

¢ Treatment of Missing Values:

- Because minimal missing values existed, median values for all numeric columns and mode for all categorical
attributes, were used as imputation methods.

¢ One-Hot Encoding of Categorical Region Fields:

- Categorical regional fields were encoded into numeric fields because machine learning models require numeric
input fields, and this method allowed preservation of spatial diversity while maintaining no ordinal structure for
each category.

¢ Scaling/Normalization (Model-Based):

- Tree-based ensemble models do not need to scale, however, normalized versions can be created for other types of
models such as logistic regression or gradient boosting if necessary.

Feature Engineering
Following the approach of “derived anomaly features” in the reference climate paper, engineered features were
designed to capture temporal and regional variability:
e Relative Year Index:
A scaled time index to model long-term trends.
e Interaction Features (for CatBoost and SHAP interaction plots):
o GDP x Life Expectancy
o Freedom x Social Support
o Region x Year interactions
e Rolling Temporal Smooth Features:
Multi-year moving averages (3-year window) for Life Ladder to capture inertia in perception, similar to
rolling climate statistics.

These engineered features improved the model’s ability to detect subtle non-linear temporal and socio-economic
interactions.
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Figure 3 — Correlation Structure Among Core Socio-Economic Variables (2015-2023)

A structured understanding of multicollinearity, feature redundancy, and possible interaction effects is made
possible by the correlation heatmap, which shows the linear relationships between the major predictors used in
this investigation. In line with previous socio-economic research, the matrix shows a number of strong positive
correlations. For example, Life Ladder (happiness) is most strongly correlated with GDP per capita, healthy life
expectancy, and social support, indicating that social support, health, and economic security all work together to
support national well-being.

Moderate links exist between the freedom to make life choices and perceptions of corruption, showing how
governance affects subjective well-being. In contrast, generosity has weak connections with most variables. This
suggests that generosity plays a separate role that does not directly relate to wealth or governance indicators.
Methodologically, the relationship between these socio-economic indicators (like GDP and life expectancy) affects
the choice of how to do "feature engineering." Variables with high correlations with one another (e.g., GDP and life
expectancy) allow for the creation of interaction terms and non-linear combinations that are well-suited for
decision trees such as CatBoost. Features that have low correlations among themselves can be treated as
independent drivers of the dependent variable without substantially increasing the risk of multicollinearity. The
diagnostic process described here parallels the reference climate study, in that the correlation analysis helped
develop the anomaly features and multi-scale predictors; however, here the diagnostics were conducted with
respect to the socio-economic factors affecting happiness.

DATA CLEANING AND QUALITY CONTROL
Quality control focused on ensuring valid ranges and removing inconsistencies:
e Qutlier Inspection:
Extreme values in GDP and corruption perception were examined using boxplots. No removals were required,
but they were kept because they reflect real socio-economic conditions.
¢ Temporal Completeness Check:
Verified that every year from 2015 to 2023 had adequate coverage across major regions.
« Regional Balancing Review:
Like “imbalanced spatial climate data,” some regions had fewer observations, such as Oceania. A significant class
distribution bias/imbalance was noted and subsequently remedied with the use of CatBoost and Random Forest
models; both are capable of handling imbalanced distributions of samples.This step ensures methodological
soundness similar to the reference paper’s “quality control for multivariate climate sensors.”

MACHINE LEARNING MODELS FOR FORECASTING
A total of eleven supervised learning models were implemented to forecast happiness scores:
Linear Regression

Ridge Regression

Lasso Regression

KNN Regressor

Random Forest Regressor

Gradient Boosting Regressor

AdaBoost Regressor

XGBoost Regressor

LightGBM Regressor

OO W=
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10. CatBoost Regressor (Best Model)

11. Neural Network — MLP Regressor
This diverse suite captures linear patterns, regional clusters, non-linear socio-economic interactions, and high-
order dependencies.

MODEL SPECIFIC FEATURE ENGINEERING
Different models required different preprocessing pipelines:
Linear / Ridge / Lasso

e StandardScaler applied

e One-hotregion encoding

e Polynomial interactions tested

e Suitable for baseline interpretability
KNN

e Min-Max scaler required

e Distance-based modeling sensitive to feature magnitudes
Random Forest

e No scaling required

e High variance reduction via feature bagging

e Captures implicit interactions
Gradient Boosting / AdaBoost / XGBoost / LightGBM

e Interaction-aware engineered variables included

e 3-year rolling average used for smoothing

e Hyperparameters tuned with grid search
CatBoost

e (ategorical encoding handled natively

e Ordered boosting prevents leakage

e Best-performing model for SHAP interpretability
Neural Network (MLP)

e Standardization mandatory

e Hidden layers tuned to avoid overfitting

e Early stopping applied

EXPLAINABILITY FRAMEWORK

In order to clarify and reformat the predictive models to become scientifically meaningful and realize them as more
than opaque “black boxes”, a dual approach to modelling explainability was put into the use of SHAP and LIME which
was a step towards an academic target of creating models with tradeoffs between accuracy and explainability.
SHAP (SHapley Additive Explanations) was also used for global and local interpretability. To visualize and ascertain
the most pertinent physical drivers of extreme events, global feature importance was mapped out through decision
plots, bee-swarm plots and dependency graphs, as was also done by [1] where ‘Distance to Streams’ and
‘Topographic Wetness Index’ were used to flood prediction.

Local SHAP explanations are computed to decompose the forecasts to see which features impacted each prediction
individually. This is in line with [7], where it was shown that the drivers of heatwaves varied over time, with features
such as soil moisture becoming more important at longer forecast horizons.

LIME (Local Interpretable Model-agnostic Explanations) is used as an explainability method to gain insights
regarding a single forecast at the case level. This provided an additional perspective in which the contribution of
features for individual extreme climate events was explainable as it offered interpretability in a multi-level manner
[11].

EXPERIMENTAL SETUP

This part reports on the design of the study which we used to train, validate, and evaluate eleven machine learning
models that we developed for global happiness score prediction. We put in a very rigorous and reproducible
protocol which we designed to level the playing field between models, which also helps to avoid issues of data
leakage and which looks at not just predictive performance but also the issue of probabilistic reliability. Also what
we present here is very much in the methodological depth of the referenced paper we based this off of but we have
full adapted it for social economic forecasting as opposed to climate event prediction.

TRAINING AND VALIDATION STRATEGY
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A strict training-validation procedure was employed to guarantee good generality of the trained models on all
geographical areas and at all times in history. The data from climate studies can be split using events; for the
happiness data, the data must be preserved with respect to both time and geography.

Chronological Time-Based Splitting
To avoid future information leaking into past predictions:
e Training set: 2015-2021
e Validation set: 2022
e Testset: 2023
In order to have an accurate model of future data with respect to what the model learns (a required feature in any
true forecasting system).

Region-Stratified K-Fold Cross-Validation
When undertaking model training, a Stratified 5-Fold Cross-Validation approach was adopted to partition the data
into five groups by global region (e.g., Western Europe, South Asia, Latin America)
Benefits:
e Maintains equal regional representation in each fold
e Prevents models from becoming biased toward highly represented regions
e Ensures consistent performance across diverse socio-economic clusters

Hyperparameter Optimization
Hyperparameters were systematically tuned in each model to be fair when comparing different models.
GridSearchCV was utilized to search through combinations of all possible hyperparameters for each model:
e Random Forest
Gradient Boosting
AdaBoost
XGBoost
LightGBM
Ridge
Lasso
KNN
e MLP
CatBoost Optimization
CatBoost used:
e Ordered Boosting
e Internal Bayesian parameter search
e In-built handling of categorical encodings
This contributed to CatBoost emerging as the strongest model overall.

Training Stability Controls
To enhance consistency and prevent overfitting:
e Early Stopping (CatBoost, LightGBM, XGBoost, MLP)

e Learning Rate Scheduling for boosting models

e Regularization (L1/L2) for linear models

e Tree Depth and Leaf Constraints for ensemble models

e Batch Normalization within MLP for stability
EVALUATION METRICS

To comprehensively assess the predictive capability of each model, multiple regression and calibration metrics
were used. Unlike classification, happiness prediction is a continuous regression problem, so numerical error
metrics were prioritized alongside reliability metrics.

Accuracy gauges how many times the model made the correct predictions counted to all cases. While it is simple to
use and intuitive, it can also yield misleading insights with imbalanced sets, because a model can achieve high

accuracy on a dataset that is largely dominated by the majority class.
TruePositive+TrueNegative

Accuracy= — - — -
TruePositive+True Negative+FalsePositive+ FalseNegative

Precision measures how many of the predicted extreme events were actually true extreme events. High precision
rates would mean fewer false alarms which are important to maintain confidence and to reduce unnecessary alerts.
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TruePositive

Precision = — —
TruePositive+FalsePositive

Recall measures how many real extreme events were predicted by the model correctly. In disaster management,
having high recall is important the consequences for missing a real event can be devastating.

TruePositive

Recall = — -
TruePositive+FalseNegative

F1-Score measures the harmonic mean of both precision and recall making its utility is to balance both metrics. A
high F1-Score indicates the model is doing well in flagging true events while minimizing false alarms.

Precision X Recall
Flscore =2X ——

Precision+Recall
ROC-AUC statistics compare the model's overall ability to differentiate between classes calculating performance
metrics at all thresholds. A higher AUC indicates a better discrimination, where 1.0 indicates perfect prediction and
AUC of 0.5 indicates random guessing.
AUC=Y"} (FPR;, — FPR,) x Rt TPR:

PR-AUC score focuses on the positive class and therefore provide a more useful metric in the case of imbalanced
dataset. PR-AUC score provides the trade-off of precision as recall improves in relation to predicted extreme events
true; essentially it tells you how well you have identified rare true events.

Brier Score can be used to numerically measure the difference between predicted probabilities and the true
outcomes where lower scores indicates better calibrated and more reliable predicted probabilities.

Calibration Curve — CatBoost
—=— Brier=0.031 A

— — — Perfect Calibration s

0.0 0.2 04 0.6 1.
Predicted Probability

Figure 4: Calibration curve for the catboost model

Interpretation:

e The dashed red diagonal = perfect calibration

e The blue curve = CatBoost’s actual probability estimates

e The proximity of the blue curve to the diagonal indicates excellent probabilistic alignment

e Minimal deviations suggest strong stability across mid-range probability values

e Demonstrates CatBoost’s reliability beyond simple prediction accuracy
This reinforces that CatBoost is not only accurate but also trustworthy, a critical requirement for socio-economic
decision-making.

RESULTS AND DISCUSSIONS
This part is a systematic review of model performance, global and local explanation of results, and empirical
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evidence regarding the social/economic factors that influence global well-being. Unlike typical overall reports about
the performance of models; this framework provides an insight into how each model arrived at its prediction(s),
which attributes are structurally important in determining the model's predictive accuracy, and how those
relationships may differ by country, year, or region.

We have applied 11 different machine learning models (from a baseline linear model through to ensemble methods:
CatBoost, LightGBM, XGBoost, Gradient Boosting, AdaBoost, K-Nearest Neighbors, Lasso, Ridge, Multilayer
Perceptron, Random Forest) in order to show a repeated trend: all current boosting models significantly outperform
all older statistical models.

PERFORMANCE ANALYSIS
The performance of the implemented models was evaluated using RMSE, MAE, R?, and the correlation coefficient. A
condensed comparative table is presented below:

Model RMSE MAE R? Correlation
CatBoost 0.4262 0.3258 0.8529 0.9242
LightGBM 0.4451 0.3447 0.8396 0.9163
Random Forest 0.4567 0.3495 0.8310 0.9127
XGBoost 0.4659 0:3533 0.8241 0.9081
Gradient Boosting 0.5203 0.39247 0.7807 0.8846
Linear Regression 0.5205 0.3947 0.7806 0.8847
Ridge Regression 0.5205 0.3946 0.7724 0.8887
Lasso Regression 0.5225 0.4320 0.7742 0.8872
AdaBoost 0.5280 0.4343 0.7294 0.8774
KNN 0.5975 0.4343 0.7294 0.8438
Interpretation

The results demonstrate a clear ordering:
e CatBoost stands as the dominant model with the lowest RMSE/MAE and the highest R? and correlation.
e LightGBM, Random Forest, and XGBoost follow closely, confirming the strength of boosting-based
methods in capturing non-linear socio-economic interactions.
e (lassical regression methods yield substantially weaker performance, reflecting their inability to model
complex, multi-dimensional relationships in global happiness data.

SHAP ANALYSIS — GLOBAL & FEATURE-LEVEL INSIGHTS
This section examines how the best-performing model (CatBoost) arrives at its predictions using SHAP.
SHAP allows us to view:
e Global importance (which features matter most overall)
o Feature-level behaviour (how the influence increases/decreases)
e Interactions (how features amplify or moderate each other)
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Approximate Global Feature Importance (LIME Aggregated)

gdp_per_capita <= 0.71

gdp_per_capita = 1.34
freedom_to_make_life_choices <= 0.36
region_North America and ANZ <= 0.00
region_South Asia <= 0.00

region_South Asia > 0.00
freedom_to_make_life_choices = 0.57
region_Latin America and Caribbean <= 0.00
_ social_support <= 0.83
region_Western Europe <= 0.00
region_Latin America and Caribbean > 0.00
healthy_life_expectancy <= 0.40
region_Southeast Asia <= 0.00
region_Southeast Asia > 0.00
region_Western Europe = 0.00
healthy_life_expectancy > 0.79
social_support > 1.31

region_East Asia <= 0.00
region_Sub-Saharan Africa > 0.00
region_Sub-Saharan Africa <= 0.00

1.06 < gdp_per_capita <= 1.34

generosity <= 0.12

generosity > 0.25

0.47 < freedom_to_make_life_choices <= 0.57
0.71 < gdp_per_capita <= 1.06
region_Middle East and Morth Africa <= 0.00

Feature

T
0.0 0.1 0.2 0.3

T T
0.4 0.5 0.6 0.7

Mean |Local Weight|
Figure5: SHAP Global Feature Importance (Bar Chart)

A global SHAP bar chart demonstrates the stability of influence hierarchy:
1. GDP per capita is the strongest and most consistent global influencer.
2. Healthy life expectancy represents long-term structural well-being.

3. Social support represents interpersonal stability.

4. Freedom to make life choices represent the happiness multiplier function of autonomy.
5. Regional identifiers are contextual and therefore represent secondary effects.

6. Perceptions of corruption have moderate global effects.

7. Generosity & Year represent less than strong, however they are still non-negligible global effects.
These rankings demonstrate the validity of the model's interpretability since they mirror well-established

sociological theories of well-being.

Global SHAP Heatmap — CatBoost Model
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Figure 6: Global SHAP Heatmap
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Meaning:
The heatmap provides sample-level granularity, revealing:
e The heat map visualizes and shows sample level data
e Vertical bands of the heat map show stable global driver variables
e Patterns of red/blue values alternate in some areas as an indication of possible non-linear contextual
effects
e Social support has higher uniformity and is confirmed to be always important across all countries
e Visualization provides evidence that the model's decision making remains consistent throughout and
structurally coherent

This visualization proves the model’s decisions remain consistent and structurally coherent.

SHAP Beehive Density Plot — CatBoost

Year

freedom_to_make_life_choices
gdp_per_capita

generosity

healthy_life_expectancy
perceptions_of_corruption

social_support

region_Central and Eastern Europe
region_Commonwealth of Independent States
region_East Asia

region_Latin America and Caribbean
region_Middle East and North Africa
region_North America and ANZ

region_South Asia

200 4
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Density

region_southeast Asia

goauingoaenannnn

region_sub-Saharan Africa
region_Western Europe

75 A

50 4

25 4

—1.00 —0.75 —0.50 —0.25 0.00 0.25 0.50 0.75 1.00
SHAP Value

Figure 7: SHAP Beehive Density Plot

Interpretation:
The beehive plot reveals:

e Broad variation of SHAP values for country level variables in terms of economic development (GDP/capita),
political freedoms and social support which confirms that these features have a large amount of impact on
the model

e Small, tight distributions for regional features — context-dependent and less globally dominant

e Long right-tails for supportive features — high values strongly increase predicted happiness

This reinforces the non-uniform effect of features across countries.
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Figure 7: SHAP Dependence Plot — GDP per capita

Meaning:

Show a monotonic non-linear increase in SHAP values as GDP increases.
Color gradient (life expectancy shading) reveals:

High GDP + high life expectancy = strongest positive effect.
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Figure 8: SHAP Dependence Plot — Social Support

Meaning:

Strong almost linear increase:

Countries with robust social support systems tend to have higher Life Ladder score predictions.
The color gradient (GDP shading) demonstrates:

Social support has the greatest impact when combined with high GDP.

SHAP Interaction Field (CatBoost)
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Figure 9: SHAP Interaction Field (Freedom x Year x SHAP Influence)

Interpretation:
This multi-dimensional interaction shows:

e Arising trend of freedom influencing happiness more strongly in recent years
e Higher concentrations of red (positive SHAP influence) after 2020
e C(lustering of high-freedom countries forming dense upward trajectories

This indicates that over time, freedom has become even stronger at explaining outcomes.

LIME ANALYSIS — LOCAL EXPLANATION CASE STUDIES
Whereas SHAP will give you a broad understanding of the overall model's behavior, LIME will provide you an
intuitive explanation for how the model made its prediction on an individual country-by-country basis.
While SHAP gives you a global perspective on your model, LIME (Local Interpretable Model-Agnostic Explanations)
gives you case-specific explanations for each country's individual predictions.
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LIME Feature Weights Across Samples — CatBoost
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Figure 10: LIME Feature Weights Across Multiple Samples (CatBoost)

=
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The chart illustrates that the LIME feature weight for each feature varies by unique individual sample. The bar
clusters are representative of the respective feature ranges or categories for a given sample, while the three colors
(Sample 3, Sample 10, Sample 55) represent how a single feature can contribute to varying degrees in the decision-
making process based upon the socio-economic characteristics of each respective country. The chart demonstrates
the localized nature of LIME, as compared to the globally consistent results provided through SHAP, which further
identifies the manner in which decision-rules change with each new sample.

LIME Feature Weights Heatmap — Across Samples
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Figure 11: LIME Aggregated Heatmap

Insights:

This heatmap demonstrates how LIME explanations are being explained over a number of samples.

¢ GDP per capita is dominant across nearly every sample.

* Weights for regional indicators are very different from one another — cultural/Geographical differences matter;
* Both Freedom and Social Support have consistently positive weights.
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The cross sample visualization supports the idea that the way we locally explain our data (via LIME) will match the
way we globally explain it via SHAP structure thereby increasing the confidence in the model.

SHAP-LIME Mirror Plot — CatBoost
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Figure12 : SHAP-LIME Mirror Plot

Explanation:

This mirror-style comparison highlights:
e High agreement on top features (GDP, life expectancy, support, freedom)
e Differences on region-based variables (LIME more sensitive locally)
e Balanced interpretability across both global and local axes

This ensures both explainers validate each other, reducing interpretability bias.

3D Explainability Surface — CatBoost

Figure13 : 3D Explainability Surface

Meaning:
This 3D visualization integrates:
e Year
e Freedom
e Model Output (Happiness)
It reveals evolving temporal dynamics in the determinants of well-being, showing:
e A noticeable upward drift post-2020
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e (Greater spread in predictions for mid-freedom countries
e (lustered peaks where both freedom and GDP are high
This visually demonstrates how socio-economic landscapes shift across time and influence model behaviour.

CONCLUSION

The research developed and tested a large,
understandable machine learning framework for
modelling and explaining the level of happiness of
countries around the world between 2015 and 2023.
As demonstrated in this study, high-performance
prediction and explainable interpretation may be
achieved together in a single analytic workflow,
particularly if advanced ensemble models (e.g.,
CatBoost) are combined with dual-interpretation
methods (e.g., SHAP and LIME).

CatBoost was the best performing model out of
eleven (Linear Regression, Ridge, Lasso, KNN,
Gradient Boosting, AdaBoost, XGBoost, LightGBM,
MLP, Random Forest, and CatBoost), with the
following values: R? = .8529; RMSE = .426; MAE =
.325; Correlation = .924. These results demonstrate
how well gradient-boosted decision trees perform in
identifying non-linear social-economic interactions
and global factors impacting a nation's overall
wellbeing.

In addition to developing a new model, the research
embedded both SHAP and LIME interpretations into
the analysis to make the often opaque field of
regression modeling into a transparent, logical
inferential process — making it possible to identify
the factors driving happiness predictions as
measurable and comparable across all nations.

6.1 KEY FINDINGS
Model Performance and CatBoost Superiority
Model Performance and CatBoost Dominance
There was considerable difference in the
performance of the 11 models tested. The traditional
linear models (Linear, Ridge, Lasso) showed
reasonable performance (R? » 0.78), while non-linear
models (Random Forest, XGBoost, Gradient Boosting,
LightGBM) produced much higher predictive power.
However, one model - CatBoost - had no peer for
superior performance:

e Highest R?%: 0.8529

e Lowest RMSE: 0.426

e Lowest MAE: 0.325

e Strongest Correlation: 0.924
These results indicate that socio-economic and well-
being indicators such as GDP per capita, healthy life
expectancy, social support, and freedom-to-make-
life-choices interact in complex, non-linear ways—
patterns effectively captured by CatBoost’s ordered
boosting strategy and categorical handling.
There is an overall trend that can be observed in the
ranking of models:
Ensemble models based on trees are better than
statistical models; and CatBoost is better than
ensemble models.

Feature Engineering
Impact

Adding temporal and multiple year moving average
indicators (i.e., the broad global and national trends
for years), along with interaction indicators (e.g., GDP
* Life Expectancy or Freedom * Social Support) all
enhanced the model's predictive capabilities
significantly.

Temporal SHAP trends show countries where there
was long-term economic and social progress
demonstrate positively trending patterns of
perceived wellbeing over time.

Interaction Terms Indicate Complex Relationships
Between Variables:

Moving averages enable the model to identify
structural stability, thus enabling the model to
differentiate between short-term fluctuations in the
data and longer-term trends in the data itself. For
instance, increases in GDP have been shown to be
positively correlated with increases in life
expectancy, demonstrating a positive correlation to a
national developmental process.

Engineered features provided the model with greater
insight into the structural relationships between
different socio-economic paths and resultant
wellbeing outcomes and therefore allowed for better
understanding of how each feature contributed to the
overall wellbeing predictions.

SHAP explainability insights allowed the model to
thoroughly dissect the manner in which each
attribute contributes to the prediction of wellbeing.
Key findings globally:

e Worldwide GDP per capita had the greatest
influence on estimated happiness levels.

¢ A human-centric group of variables, including social
support, ability to make your own choices in life, and
longevity, consistently contributed to happiness
estimates around the world.

« Benefits derived from strong social structures were
magnified when strong economies existed (SHAP
interaction values).

Three key lessons were found using SHAP:

1. Cohesion: Ranking of each feature was consistent
over years and geographically.

2. Non-Linearities: Many of the features produced
non-linear results; for instance, the contribution to
GDP increased rapidly at the higher end of the
threshold range.

3. Interdependencies: Happiness is shaped by
interdependent combinations of social support,
health status, and infrastructure indicators rather
than singular measurements.

Regional Interpretation Using Local Interpretable
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Model-agnostic Explanations (LIME)
While SHAP provides explanation for average
behavior of all nations, LIME identified individual
country explanations for each nation.
« Different weightings were assigned to LIME weights
across different nations, thereby validating the
diversity of local socio-economic profiles.
¢ Some nations have been shown to be highly
sensitive to social support, whereas other nations are
more responsive to GDP and/or freedom indicators.
e The variation between samples emphasized the
importance of regional context in defining
determinants of happiness.
Thus, together, the SHAP-LIME framework provides
both global explanations and country-by-country
clarification for an understanding of how happiness
is defined.

6.2 LIMITATIONS

Despite strong predictive and explanatory outcomes,
several limitations constrain broader deployment:

e Temporal Constraints

The dataset spans 2015-2023 only. Although recent,
this period may not fully represent long-term socio-
economic evolution, particularly for transitioning
economies.

« Spatial & Regional Bias

Some regions (e.g., Western Europe) have denser
samples and higher data completeness than others
(e.g. Sub-Saharan Africa).
This may skew learning toward structurally stable
economies.

¢ Measurement Uncertainty

World Happiness data relies partly on subjective
survey responses. Differences in cultural expression,
optimism bias, and survey methodology may
introduce measurement variance that the model
cannot fully capture.

« Interaction Complexity

Although CatBoost captures non-linearities, very
Cross Cultural Generalizability:

deep socio-cultural factors (political climate, cultural
norms, governance quality) are not fully represented
in the dataset.

e Computational Cost

SHAP value computation—especially interaction
SHAP—can be computationally heavy for large
datasets, limiting real-time deployment.

e Lack of Causal Interpretation

The model offers associative rather
than causal explanations.

GDP and life expectancy correlate strongly with
happiness but cannot be claimed as direct causal
drivers without broader socio-economic modelling.

6.3 FUTURE DIRECTIONS
Multi-modal integration of various types of data is
expected in future research. The addition of
education quality; income inequality; political
stability indices; environmental indicators; and
digital infrastructure may add to predictive capacity
by adding previously unmodeled social-economic
dimensions.
Extensions of deep learning:
Tree-based models are excellent, however, as neural
frameworks such as LSTMs and transformers have
shown, they are capable of modeling long term
temporal behavior within happiness datasets;
including the transition of generations and the
impacts of policies.
Causal modeling:
The addition of structural causal models or
instrumental variable based modeling would provide
deeper insights into policy interventions.
Operational Dashboards and Real Time Monitoring:
Development of operational dashboards for
government agencies; international development
organizations; and think tanks focused on social
policy would assist in translating model outputs into
real time decision making.

It is expected that researchers will assess whether models trained on global data can be generalized equally well

across different local cultural contexts.

Model Performance Comparison (RMSE)
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Figure 14: Model Performance Comparison Across All Algorithms
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CatBoost has proven to be the most reliable and consistent model among all models compared in this study with
respect to RMSE, MAE, R2 and correlation as shown through its strong performance in comparison of models in the
graph provided.

CatBoost's great performance in both fitting the data (highest R2 and correlation) and minimizing errors (lowest
RMSE / MAE) indicates that the model does an excellent job at fitting the data and also does a good job at making
predictions regardless of the social-economic context.

The visual evidence presented here supports that CatBoost is the preferred method for use in the interpretability
framework using SHAP and LIME and it is able to combine the multiple methods from the study into one.

It can be clearly concluded that advanced gradient-boosting based architectures are the best way to simulate the
dynamic aspects of global happiness.

Global Happiness Trend (2015-2023)
5.651
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5.55¢

5.50r
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2015 2016 2017 2018 2019 2020 2021 2022 2023
Year

Figure 15 :Temporal Trend of Global Happiness Scores (2015-2023)

The temporal trend graph represents a macro-level view of the dataset and displays a trend line of global happiness
over the nine year time span as relatively stable yet somewhat volatile. The fact that there are significant regional
variations in the data and that the global mean remains resilient indicates that the aforementioned factors such as
GDP/capita, social support and life expectancy continue to be structurally impactful on a longer term basis. This
graph demonstrates the ability of the model to create reliable predictions across changing global environments and
adds to the study’s central argument that the socioeconomic determinants of wellbeing are both statistically
significant and temporally persistent.

Additionally, this graph demonstrates that the machine learning interpretation methods employed in the study are
consistent with observable global trends, providing a broader real world context to the research findings.
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Global Feature Importance Breakdown

Freedom of Life Choices
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Figure 16 :Global Feature Contribution Distribution

The pie chart represents the models inner workings in a concise, easy-to-understand manner. The primary drivers
of the models overall explanation are the same predictors as those of the existing body of knowledge from happiness
research, including GDP/capita, healthy life expectancy, social support, and freedoms to make choices in one’s life.
This lends additional credence to the study’s narrative regarding the interpretability of the CatBoost model being
accurate and rational, based upon empirically derived socioeconomic theories.

Further evidence supporting the credibility of the predictive engine and SHAP/LIME interpretative frameworks is
demonstrated through their alignment with established Human Development Indicators (HDI) that represent global
trends in human development.

Finally, the pie chart provides an overarching summary of the studies findings: global happiness has four primary
determinants - economic security, health, autonomy and social cohesion - which it views as multi-faceted
phenomena
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