

Reskilling for Industry 4.0: HR, Technology, and Employment Law in a Conceptual Framework

Article History:

Name of Author:

Deepika Swain¹, Akshay Madaan², Anamika Sarao³, Aafrin Ayaz⁴, Dr. Mamta Rani⁵

Affiliation:

¹Senior Research Associate, XIM University, Bhubaneswar, India,

Email ID : deepika@xim.edu.in

²SRF, Panjab University, Chandigarh,

Email ID : akshaymadaan007@gmail.com

³Research Scholar, University Business School, Panjab University, Chandigarh,

Email ID : anamikasarao@gmail.com

⁴Research Scholar, Dev Bhoomi Uttarakhand University, Dehradun,

Email ID : aafrinayaz@gmail.com

⁵Associate Professor, Gitarattan International Business School,

Email ID : doctormamtarani@gmail.com

How to cite this article: Deepika Swain , Akshay Madaan , Anamika Sarao, Aafrin Ayaz, Dr. Mamta Rani, Reskilling for Industry 4.0: HR, Technology, and Employment Law in a Conceptual Framework, *J Int Commer Law Technol.* 2026;7(1): 411-418.

©2025 the Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (<http://creativecommons.org/licenses/by/4.0>)

Abstract

Industry 4.0 technologies—including artificial intelligence, automation, robotics, and cyber-physical systems—are transforming organizational structures, job designs, and the legal environment governing work. While reskilling has become essential for workforce adaptability, existing research treats HR strategy, technological disruption, and employment law as separate domains. This conceptual paper introduces an integrative multi-level framework that unifies these perspectives to explain how technological change generates new skill demands, how HR mechanisms translate these demands into organizational reskilling strategies, and how national and international legal regulations shape the boundaries of these efforts. Grounded in Human Capital Theory, Socio-Technical Systems Theory, and Institutional/Legal Theory, the framework identifies technological antecedents, HR capability-building mechanisms, and legal moderators influencing reskilling outcomes. By articulating testable propositions, the study contributes a novel interdisciplinary lens for examining workforce transitions and provides actionable insights for HR leaders, policymakers, and regulators seeking to build equitable and legally compliant reskilling ecosystems in the Industry 4.0 era

Keywords: Industry 4.0; Reskilling; Human Resource Management; Technology Law; Employment Law; Artificial Intelligence; Automation; Regulatory Framework; International Labour Standards....

Introduction

The emergence of Industry 4.0—characterized by the convergence of artificial intelligence (AI), automation, machine learning, Internet of Things (IoT), and cyber-physical systems—is profoundly reshaping global production networks, organizational structures, and labor markets. As firms integrate intelligent technologies into core business processes, the nature of work is undergoing rapid transformation, demanding new digital, cognitive, and socio-technical skill sets. At the same time, the displacement of routine and manual tasks raises complex questions related to employment security, worker rights, and employer obligations under evolving legal and regulatory frameworks. In this environment, **reskilling** has become a central strategic priority for organizations seeking to enhance workforce adaptability while meeting international compliance and social responsibility expectations.

Despite widespread recognition of its importance, reskilling remains insufficiently theorized at the intersection of **Human Resource Management (HRM)**, **technological innovation**, and **employment law**. Existing scholarship tends to treat these domains in isolation: HR studies emphasize talent development and competency building; technology research focuses on automation and system design; and legal scholarship examines labor protections, contractual obligations, and regulatory responses to digital transformation. However, the challenges presented by Industry 4.0 are inherently interdisciplinary. The effectiveness of organizational reskilling efforts depends not only on internal HR strategies but also on the technological affordances of new systems and the legal boundaries within which firms operate.

For multinational organizations, this complexity is heightened by cross-jurisdictional differences in

employment regulations, skill development mandates, data protection requirements, and AI governance frameworks. Countries differ widely in how they regulate algorithmic decision-making, mandate employer responsibilities for upskilling, or protect workers from technology-driven displacement. As a result, organizations face diverging incentives and constraints that shape their willingness and ability to invest in employee reskilling. Understanding these dynamics requires an integrated conceptual lens capable of connecting technological disruption, HR strategy, and legal systems.

This paper responds to this gap by proposing a **multi-level conceptual framework** that links Industry 4.0 technologies, organizational reskilling practices, and legal/institutional contexts. The framework explains how technological drivers create new skill demands, how HR mechanisms translate these demands into reskilling strategies, and how employment law moderates the design and outcomes of such initiatives. Grounded in Human Capital Theory, Socio-Technical Systems Theory, and Institutional Theory, the model captures both micro-level and macro-level factors influencing workforce transitions.

The contributions of this study are threefold. First, it offers an interdisciplinary synthesis that integrates HRM, technology, and employment law—domains rarely examined together in reskilling research. Second, it develops theoretically grounded **propositions** to guide future empirical work across international settings. Third, it provides practical and policy-relevant insights for organizations, governments, and regulatory bodies seeking to build equitable, future-ready reskilling ecosystems. By situating reskilling within broader debates on digital transformation and international labor regulation, this paper enriches discussions in the fields of commercial law and technology, and advances understanding of how firms can responsibly and legally navigate the workforce challenges of Industry 4.0.

2. Literature Review

2.1 Industry 4.0 and Technological Transformation

Industry 4.0 represents the integration of advanced digital technologies—such as artificial intelligence, robotics, IoT, and cyber-physical systems—into production and service processes (Schwab, 2016; Liao et al., 2017). These technologies fundamentally alter job structures by automating routine tasks while augmenting complex decision-making (Brynjolfsson & McAfee, 2014). Scholars argue that smart systems enhance productivity but simultaneously increase skills mismatches and workforce polarization (Frey & Osborne, 2017; Acemoglu & Restrepo, 2019).

Despite rapid digitization, empirical studies highlight persistent gaps in organizational readiness and digital skills, especially in emerging economies (Sony & Naik, 2019). These gaps intensify the need for structured reskilling frameworks aligned with technological advancements.

2.2 Reskilling and Workforce Capabilities

Reskilling is defined as training employees to perform new or transformed roles arising from technological change (ILO, 2019). HRM literature categorizes reskilling into upskilling, cross-skilling, and transformational skill development (Sharma & Bhatnagar, 2020). Effective reskilling is associated with competency mapping, personalized learning pathways, and continuous learning cultures (Noe et al., 2014; Cascio & Montealegre, 2016).

However, scholars note that most organizations lack structured mechanisms to anticipate future skills and design responsive reskilling programs (World Economic Forum, 2020). Furthermore, existing studies treat reskilling as an HR intervention without fully considering the constraints or affordances posed by advanced technological systems (Sung, 2018).

2.3 HRM Responses to Technological Disruption

HR research identifies several strategic responses to digital transformation, including job redesign (Parker & Grote, 2020), agile learning systems (Garro-Abarca et al., 2021), internal talent marketplaces (Boudreau & Cascio, 2020), and hybrid human–AI collaboration models (Raisch & Krakowski, 2021). Predictive talent analytics is increasingly used to identify skill gaps and forecast future workforce needs (Van den Broek et al., 2021).

Yet, concerns remain about algorithmic biases, data privacy, and fairness in HR analytics systems (Leicht-Deobald et al., 2019). These legal and ethical concerns indicate that HRM responses cannot be studied in isolation from employment law and technology governance.

2.4 Employment Law, Skill Protection, and Regulatory Shifts

Employment law plays a central role in shaping employer obligations and employee rights during technology-driven transitions. Scholars have documented legal protections around worker displacement, training rights, and skill development across jurisdictions (De Stefano, 2020; Cherry, 2016). Regulatory responses to AI and automation—such as the EU's AI Act, GDPR, and national labor reforms—affect

how organizations design reskilling initiatives (Wachter et al., 2017).

Research also points to growing scrutiny around algorithmic decision-making in employment, where transparency, explainability, and non-discrimination are key legal concerns (Bertolini et al., 2021). However, most legal scholarship remains disconnected from HR and technology studies, creating a gap in understanding how regulations influence firm-level reskilling strategies.

2.5 Comparative Legal Perspectives on AI, Automation, and Reskilling

Different legal systems regulate automation, algorithmic decision-making, and workforce reskilling in diverse ways, creating varying obligations for employers. For instance, the **European Union's AI Act** mandates human oversight, algorithmic transparency, and strict documentation requirements for AI systems used in hiring or performance evaluation. In contrast, the **United States** relies primarily on anti-discrimination statutes and state-level AI transparency laws (e.g., Illinois' AI Video Interview Act), placing fewer proactive obligations on employers but increasing liability risks when algorithmic bias emerges. India's emerging **Digital Personal Data Protection (DPDP) Act 2023** introduces consent-based data usage requirements that restrict the free use of employee data for predictive analytics and skill assessments.

These legal variations create asymmetries in reskilling policies. In the EU, mandatory works council consultations and training rights under labour directives increase employer responsibility for capability development during technological change. By contrast, jurisdictions without mandatory training provisions rely on organizational discretion, often leading to uneven reskilling outcomes. Despite the significance of these regulatory differences, existing HRM and Industry 4.0 research rarely integrates comparative legal analysis into reskilling frameworks—representing a substantive gap that this paper addresses.

3. Theoretical Foundation

The conceptual framework proposed in this paper is grounded in three complementary theoretical perspectives: **Human Capital Theory**, **Socio-Technical Systems Theory**, and **Institutional/ Legal Theory**. Together, these lenses explain how technological change, organizational strategy, and regulatory environments jointly shape reskilling in the Industry 4.0 era.

3.1 Human Capital Theory

Human Capital Theory (Becker, 1993) provides an economic rationale for reskilling by viewing employees' knowledge, skills, and abilities as productive assets that generate returns for both individuals and firms. In the context of Industry 4.0, technological disruption increases the risk of skill obsolescence, reinforcing the need for continuous investment in learning and capability development (Autor, 2015). Firms invest in reskilling to enhance labor productivity, maintain competitiveness, and reduce hiring and turnover costs (Cascio & Montealegre, 2016). However, this theory assumes that organizations can freely invest in training and does not sufficiently account for legal constraints, ethical responsibilities, or technological dependencies that influence reskilling decisions.

3.2 Socio-Technical Systems Theory

Socio-Technical Systems Theory (Trist & Bamforth, 1951; Clegg, 2000) emphasizes that optimal organizational performance emerges when technical systems (e.g., AI tools, automation technologies) and social systems (e.g., employee skills, job roles, organizational culture) evolve together. Industry 4.0 environments require redesigned work processes, hybrid human-machine roles, and elevated digital competencies (Parker & Grote, 2020). This theory highlights the interdependence between technology deployment and workforce capability development, suggesting that reskilling cannot be treated as a standalone HR intervention but must be embedded in job redesign and broader transformation initiatives (Raisch & Krakowski, 2021).

3.3 Institutional and Legal Theory

Institutional Theory (Scott, 2014) posits that organizational behavior is shaped by formal rules, social norms, and regulatory pressures. Employment and technology-related laws—such as training obligations, algorithmic transparency mandates, and data protection requirements—directly influence how firms design and implement reskilling initiatives (Wachter et al., 2017; De Stefano, 2020). Legal Theory complements this perspective by explaining how institutional structures create enforceable rights and responsibilities related to skill development, worker protection, and technological fairness. In Industry 4.0, regulatory environments not only dictate compliance boundaries but also shape organizational incentives to invest in reskilling.

These three theories collectively explain why reskilling in Industry 4.0 is not merely an HR activity but an outcome of interacting technological forces, strategic organizational responses, and evolving legal-

institutional environments. They provide the foundation for the multi-level conceptual framework presented in the following section.

4. Gaps in Existing Scholarship

Although research on Industry 4.0, HRM, and employment law has expanded in recent years, the scholarly landscape remains fragmented. A review of prior studies reveals **three major gaps** that justify the development of an integrated conceptual framework for reskilling.

4.1 Siloed Treatment of HRM, Technology, and Law

Much of the existing literature examines technological transformation, HR strategies, and employment law as separate domains rather than as interconnected elements of organizational change.

- Studies on digital transformation focus largely on automation, AI, and job redesign but rarely incorporate HR or legal dimensions (Brynjolfsson & McAfee, 2014).
- HRM research on reskilling emphasizes training systems, competency mapping, and learning cultures but pays limited attention to legal constraints or technology-driven dependencies (Sharma & Bhatnagar, 2020).
- Legal scholarship explores worker protections, algorithmic regulation, and data privacy without integrating organizational strategy or skill development processes (De Stefano, 2020; Cherry, 2016).

This disciplinary isolation limits understanding of how organizations navigate reskilling challenges within complex technological and regulatory ecosystems.

4.2 Limited Understanding of Legal Moderators in Reskilling

Despite the growing influence of employment law, AI regulation, and data protection norms, scholars have not sufficiently examined how legal structures shape organizational reskilling decisions. Regulations such as the EU's AI Act, GDPR, algorithmic fairness mandates in hiring, and national training obligations directly influence:

- the design of HR analytics systems,
- the scope of worker retraining, and
- employer responsibilities during technology-driven displacement (Wachter et al., 2017; Bertolini et al., 2021).

However, empirical and conceptual studies that incorporate these legal moderators into reskilling frameworks are scarce.

4.3 Lack of Multi-Level and Cross-Jurisdictional Perspectives

Industry 4.0 adoption varies significantly across nations and sectors due to differences in legal regimes, technological readiness, and labor market institutions (Marginson, 2019). Yet:

- most reskilling studies focus on single-country contexts,
- few incorporate international variations in employment law,
- cross-level interactions (employee, organization, regulatory environment) remain underexplored.

This gap is critical for journals focused on international commercial law, where regulatory diversity matters for both global workforce management and multinational compliance.

These gaps underscore the need for a **multi-level, integrated conceptual framework** that brings together technological drivers, HR reskilling mechanisms, and employment law considerations to explain how organizations respond strategically to Industry 4.0. The next section develops such a framework.

5. Conceptual Framework

In response to the fragmented treatment of technology, HRM, and employment law, this paper proposes a **three-component conceptual framework** that explains how organizations design and implement reskilling strategies in the Industry 4.0 environment.

The framework is built on the premise that **technological change creates skill shifts, HR practices translate these shifts into capability-building, and legal institutions shape both the opportunities and boundaries of reskilling**.

5.1 Technological Drivers

Industry 4.0 technologies—such as artificial intelligence, automation, robotics, IoT, and data analytics—are primary forces reshaping work. These technologies alter job designs, redefine task structures, and create new skill requirements (Brynjolfsson & McAfee, 2014; Acemoglu & Restrepo, 2019).

In this framework, technological drivers serve as the *triggering mechanism* for organizational reskilling by:

- increasing demand for digital, analytical, and socio-technical competencies, and
- shifting organizations toward hybrid human-machine work models.

Without technological disruption, the need for reskilling would be less urgent and less strategic.

5.2 HR Reskilling Mechanisms

HRM functions act as the *internal response system* that translates technological requirements into workforce capability development. Core mechanisms include:

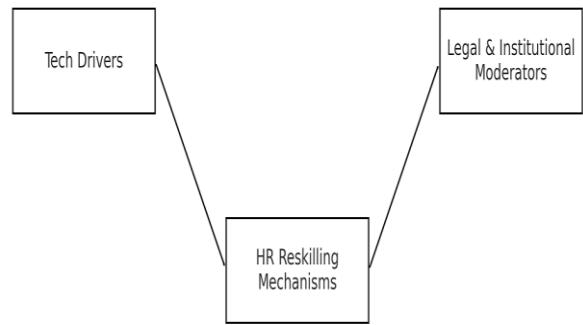
- **Workforce Planning:** Identifying emerging skill gaps arising from automation and AI.
- **Competency Mapping and Job Redesign:** Aligning roles and tasks with new technological processes (Parker & Grote, 2020).
- **Learning and Development Systems:** Providing continuous, digitally enabled learning opportunities to support skill acquisition (Noe et al., 2014).

These HR mechanisms operationalize the organization's reskilling strategy by equipping employees with the competencies required to function effectively in redesigned technology-enabled roles.

5.3 Legal and Institutional Moderators

Employment laws and institutional frameworks serve as *boundary conditions* that shape how organizations conceptualize, implement, and evaluate reskilling initiatives. Regulatory factors include:

- training obligations linked to technological change,
- rules governing algorithmic decision-making in employment, and
- data protection requirements that influence HR analytics and skill assessments (Wachter et al., 2017; De Stefano, 2020).


These institutional moderators affect both the **scope** and **direction** of reskilling programs. For example, stringent data privacy regulations may limit predictive skill profiling, while national labour codes may mandate employer-sponsored training when automation displaces work.

Integrative Logic of the Framework

The proposed framework suggests that **effective reskilling occurs when technological drivers, HR mechanisms, and legal structures are aligned**.

Specifically:

- Technology determines *what* skills are needed.
- HRM determines *how* those skills are developed.
- Employment law determines *the boundaries and obligations* within which reskilling must occur.

Figure 1. Integrated Conceptual Framework for Reskilling in Industry 4.0

This alignment ensures that reskilling is technologically relevant, strategically coherent, and legally compliant.

The conceptual framework provides a multi-level structure for analyzing reskilling in Industry 4.0, integrating technological, organizational, and legal dimensions. It sets the foundation for developing formal research propositions, which are presented in the next section.

6. Research Propositions

Proposition 1: *Higher levels of Industry 4.0 technology adoption (automation, AI analytics, robotics) will be associated with greater perceived skill obsolescence and thus a stronger organizational mandate for reskilling initiatives.*

Proposition 2: *Organizations that implement structured HR reskilling systems (competency mapping, digital learning platforms, predictive analytics) will demonstrate higher effectiveness in closing technology-driven skill gaps.*

Proposition 3: Job redesign initiatives that integrate human–AI task sharing will positively influence the alignment between required technological skills and employee learning outcomes.

Proposition 4: In countries with strong training mandates or legal incentives (e.g., mandatory retraining laws, tax credits), the relationship between technological disruption and organizational investment in reskilling will be amplified.

Proposition 5: Organizations operating under strict data governance and algorithmic transparency laws will rely less on automated HR analytics for skill assessment, resulting in slower deployment of analytics-driven reskilling strategies.

Proposition 6: The alignment of technological demands, HR reskilling mechanisms, and legal compliance structures will positively predict workforce adaptability outcomes (employee readiness, reduced displacement risk, performance stability).

7. Discussion

The findings of this conceptual analysis highlight the complex interplay between technological disruption, HR reskilling mechanisms, and employment law in shaping workforce transformation during Industry 4.0. The proposed framework and propositions offer several important insights for theory development and practice.

First, the framework emphasizes that **technological change is not merely a technical upgrade but a catalyst for organizational capability reconfiguration**. As digital technologies reshape tasks, workflows, and business models, the demand for new competencies becomes unavoidable. Proposition 1 suggests that organizations with higher levels of automation and AI adoption will experience greater pressure to initiate reskilling. This underscores the need for researchers and practitioners to view technology implementation and workforce capability development as parallel, not sequential, processes.

Second, the framework positions HRM as a **translational system** that converts technological requirements into actionable employee skill development. Propositions 2 and 3 highlight that strategic HR practices—such as competency mapping, job redesign, and digital learning—are central to bridging the gap between technological change and employee readiness. This challenges traditional HRM perspectives that conceptualize training as an auxiliary function, emphasizing instead that reskilling is a critical strategic capability in digital transformation.

Third, the framework introduces employment law as an **institutional moderator** that shapes the boundaries of organizational decision-making. Propositions 4 and 5 illustrate that legal norms influence both the opportunities and constraints for reskilling. Laws mandating training rights or workforce protection can encourage investment in reskilling, while data protection and algorithmic transparency rules may restrict certain analytics-driven approaches. This perspective extends existing HRM and technology research by demonstrating that reskilling is not solely a managerial choice but a compliance-driven and institutionally embedded process.

Finally, Proposition 6 integrates these dimensions by arguing that **alignment across technological, HR, and legal domains** enhances workforce adaptability and organizational performance. When firms harmonize their reskilling strategies with both technological needs and regulatory expectations, they are more likely to achieve effective workforce transformation, minimize displacement risks, and sustain competitiveness.

Overall, the discussion reveals that reskilling in Industry 4.0 cannot be fully understood through isolated disciplinary lenses. Instead, it requires a **multi-level, interdisciplinary perspective** that accounts for the co-evolution of technology, organizational strategy, and legal regulation. This perspective opens new avenues for empirical research on cross-national regulatory differences, comparative workforce strategies, and the organizational dynamics of human–AI collaboration.

7.1 Implications for International Commercial Law and Technology Governance

The integrative framework proposed in this study carries significant implications for international commercial law and emerging technology governance systems. As multinational organizations adopt AI, automation, and data-driven HR tools, they operate within increasingly complex cross-border regulatory environments. The alignment between technological deployment, workforce transitions, and legal compliance becomes central not only to organizational sustainability but also to global commercial legitimacy.

First, the framework highlights how differences in national regulatory regimes—such as the EU AI Act, India's Digital Personal Data Protection Act (DPDP 2023), and U.S. state-level algorithmic accountability laws—shape the design and implementation of reskilling initiatives. These variations impose distinct compliance expectations on employers related to transparency, worker training rights, algorithmic accountability, and data governance. Understanding these legal asymmetries is essential for multinational corporations navigating multiple jurisdictions.

Second, the increasing use of algorithmic HR systems raises legal concerns related to non-discrimination, explainability, and due process. Commercial law frameworks are evolving to govern the fairness of automated decision-making in areas such as hiring, promotion, and upskilling eligibility. The proposed model illustrates that organizations cannot rely solely on technological or HR considerations; compliance with evolving global norms is a prerequisite for sustainable workforce practices.

Third, the framework emphasizes that inadequate or inconsistent reskilling investments may expose firms to legal liabilities, including claims related to unfair dismissal, inadequate retraining obligations, or discriminatory use of AI systems. Consequently, reskilling becomes not only a strategic HR decision but also a commercial law compliance requirement.

Finally, the conceptual integration of law, HR, and technology underscores the need for harmonized global regulatory approaches. As digital labor markets expand, international commercial law must increasingly address cross-border issues such as skill mobility, digital credential recognition, and multinational training obligations. The framework provides a valuable foundation for future legal scholarship exploring how institutions can support equitable workforce transitions in the Industry 4.0 era.

8. Managerial and Policy Implications

The integrated framework developed in this study reveals important implications for both organizational leaders and policymakers seeking to navigate workforce transformation in the Industry 4.0 era. For managers, the findings underscore the need to treat reskilling as a strategic component of digital transformation rather than an auxiliary HR activity. Organizations must ensure that training initiatives are planned in tandem with technology adoption so that employees acquire the competencies required for hybrid human-machine roles. HR teams, in particular, must strengthen their capabilities in digital learning design, competency mapping, and predictive workforce analytics to anticipate skill transitions more effectively. Equally important is the redesign of jobs and workflows to reflect technology-enabled processes, supported by a workplace culture that values continuous learning and encourages employee adaptability. Compliance considerations also play a central role: as firms increasingly rely on HR analytics and AI-enabled assessment tools, managers must prioritize ethical data practices and adhere to legal requirements relating to transparency, fairness, and privacy.

From a policy perspective, the framework highlights the need for regulatory environments that support and incentivize organizational investment in reskilling.

Governments can play a critical role by introducing training mandates, tax incentives, or national training funds that reduce employer hesitation in investing in human capital during periods of digital change. Additionally, updated legal frameworks governing algorithmic decision-making, data protection, and employment relations are essential to ensure that the adoption of advanced technologies does not undermine worker rights or perpetuate bias. Policymakers should also encourage industry-level and public-private collaborations that expand access to digital learning infrastructure, particularly for small and medium enterprises with limited resources. Establishing national digital competency standards can further provide a consistent benchmark for skill development and help organizations align their reskilling strategies with broader economic priorities.

9. Conclusion

Industry 4.0 is reshaping work at an unprecedented pace, creating both opportunities and pressures for organizations to redesign roles, upgrade capabilities, and ensure that employees can thrive in digitally enabled environments. This paper has argued that reskilling cannot be understood solely through technological or HRM perspectives; rather, it emerges from the dynamic intersection of technological drivers, organizational strategy, and evolving legal frameworks. By integrating Human Capital Theory, Socio-Technical Systems Theory, and Institutional/Legal Theory, the study provides a multi-level conceptual framework that explains how these forces interact to influence reskilling initiatives. The six propositions derived from the framework offer a foundation for empirical inquiry into the mechanisms and moderators shaping workforce adaptation in the digital era.

The contributions of this paper are threefold. First, it synthesizes fragmented literature across HRM, technology studies, and employment law into an integrated model that better reflects the realities of Industry 4.0. Second, it demonstrates that effective reskilling is contingent on alignment among technological imperatives, internal HR mechanisms, and external regulatory obligations. Third, it highlights the critical role of legal and institutional contexts—an often-overlooked dimension—in shaping the opportunities and constraints that organizations face when redesigning work and investing in employee capabilities.

Future research can build on this framework by conducting cross-country comparative studies, examining sector-specific regulatory pressures, and exploring employee-level psychological and behavioral responses to reskilling. Longitudinal and mixed-method studies would also help unpack the causal pathways linking technology adoption, legal environments, and

organizational learning systems. As global economies continue to digitize, developing a deeper understanding of how firms and institutions collaborate to build future-ready workforces will remain an essential scholarly and policy priority.

REFERENCES

1. [1]. Acemoglu, D., & Restrepo, P. (2019). Automation and new tasks: How technology displaces and reinstates labor. *Journal of Economic Perspectives*, 33(2), 3–30.
2. Autor, D. (2015). Why are there still so many jobs? The history and future of workplace automation. *Journal of Economic Perspectives*, 29(3), 3–30.
3. Becker, G. S. (1993). Human capital: A theoretical and empirical analysis, with special reference to education (3rd ed.). University of Chicago Press.
4. Bertolini, A., Episcopo, M., & Sena, V. (2021). Artificial intelligence and workers' rights: The European approach. *Computer Law & Security Review*, 41, 105563.
5. Boudreau, J., & Cascio, W. (2020). The search for global competence: From international HR to talent management. *Journal of World Business*, 55(1), 100103.
6. Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. W.W. Norton.
7. Cascio, W., & Montealegre, R. (2016). How technology is changing work and organizations. *Annual Review of Organizational Psychology and Organizational Behavior*, 3, 349–375.
8. Cherry, M. A. (2016). Beyond misclassification: The digital transformation of work. *Comparative Labor Law & Policy Journal*, 37(3), 577–602.
9. Clegg, C. W. (2000). Sociotechnical principles for system design. *Applied Ergonomics*, 31(5), 463–477.
10. Crook, T. R., Todd, S. Y., Combs, J. G., Woehr, D. J., & Ketchen, D. J. (2011). Does human capital matter? A meta-analysis of the relationship between human capital and firm performance. *Journal of Applied Psychology*, 96(3), 443–456.
11. De Stefano, V. (2020). The rise of the “just-in-time workforce”: On-demand work, crowdwork, and labor protection in the gig economy. *Comparative Labor Law & Policy Journal*, 37(3), 471–504.
12. Frey, C. B., & Osborne, M. A. (2017). The future of employment: How susceptible are jobs to computerisation? *Technological Forecasting and Social Change*, 114, 254–280.
13. Garro-Abarca, V., Palos-Sanchez, P., & Munoz-Leiva, F. (2021). Trends in digital transformation research: A bibliometric analysis. *Journal of Business Research*, 132, 593–607.
14. Institute of Labour (ILO). (2019). Work for a brighter future: Global Commission on the Future of Work. ILO.
15. Leicht-Deobald, U., Busch, T., Schank, C., Weibel, A., Schafheitle, S., Wildhaber, I., & Kasper, G. (2019). The challenges of algorithm-based HR decision-making for personal integrity. *Journal of Business Ethics*, 160(2), 377–392.
16. Liao, Y., Deschamps, F., Loures, E., & Ramos, L. (2017). Past, present and future of Industry 4.0: A systematic literature review and research agenda. *International Journal of Production Research*, 55(12), 3609–3629.
17. Loon, M., & Casad, S. (2021). Developing future-ready employees: New skills and new roles for a new world of work. *Human Resource Development International*, 24(1), 1–10.
18. Marginson, P. (2019). Capitalist diversity and industrial relations. *European Journal of Industrial Relations*, 25(2), 137–152.
19. Noe, R. A., Clarke, A. D. M., & Klein, H. J. (2014). Learning in the twenty-first-century workplace. *Annual Review of Organizational Psychology and Organizational Behavior*, 1, 245–275.
20. Parker, S. K., & Grote, G. (2020). Automation, algorithms, and beyond: Why work design matters more than ever in a digital world. *Applied Psychology*, 69(4), 956–1000.
21. Raisch, S., & Krakowski, S. (2021). Artificial intelligence and management: The automation-augmentation paradox. *Academy of Management Review*, 46(1), 192–210.
22. Scott, W. R. (2014). Institutions and organizations: Ideas, interests, and identities (4th ed.). Sage.
23. Schwab, K. (2016). The fourth industrial revolution. *World Economic Forum*.
24. Sharma, R., & Bhatnagar, J. (2020). Workforce agility in the age of digital transformation. *International Journal of Human Resource Management*, 31(12), 1486–1515.
25. Sony, M., & Naik, S. (2019). Ten lessons for managers while implementing Industry 4.0. *IEEE Engineering Management Review*, 47(2), 45–52.
26. Stach, C., & Mitschick, A. (2021). GDPR-compliant data processing in HR analytics. *Computers & Security*, 108, 102340.
27. Sung, T. K. (2018). Industry 4.0: A Korea perspective. *Technological Forecasting and Social Change*, 132, 40–45.
28. Trist, E., & Bamforth, K. (1951). Some social and psychological consequences of the longwall method of coal-getting. *Human Relations*, 4(1), 3–38.
29. Van den Broek, J., Sergeeva, A., & Huysman, M. (2021). HR analytics and human resource management: A systematic literature review. *Human Resource Management Journal*, 31(3), 620–640.

How to cite this article: Deepika Swain , Akshay Madaan , Anamika Sarao, Aafrin Ayaz, Dr. Mamta Rani, Reskilling for Industry 4.0: HR, Technology, and Employment Law in a Conceptual Framework, *J Int Commer Law Technol.* 2026;7(1): 411-418.

30. Wachter, S., Mittelstadt, B., & Floridi, F. (2017). Transparency of algorithmic models: The right to explanation and beyond. *International Data Privacy Law*, 7(2), 76–99.

Wilkens, U., & Lonn, F. (2020). Re-skilling in the digital era. *German Journal of Human Resource Management*, 34(2), 143–167.